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Urban spatial structure in large cities is becoming ever more complex as populations
grow in size, engage in more travel, and have increasing amounts of disposable income
that enable them to live more diverse lifestyles. These trends have prominent and
visible effects on urban activity, and cities are becoming more polycentric in their
structure as new clusters and hotspots emerge and coalesce in a wider sea of urban
development. Here, we apply recent methods in network science and their general-
ization to spatial analysis to identify the spatial structure of city hubs, centers, and
borders, which are essential elements in understanding urban interactions. We use a
‘big’ data set for Singapore from the automatic smart card fare collection system,
which is available for sample periods in 2010, 2011, and 2012 to show how the
changing roles and influences of local areas in the overall spatial structure of urban
movement can be efficiently monitored from daily transportation.
In essence, we first construct a weighted directed graph from these travel records.

Each node in the graph denotes an urban area, edges denote the possibility of travel
between any two areas, and the weight of edges denotes the volume of travel, which is
the number of trips made. We then make use of (a) the graph properties to obtain an
overall view of travel demand, (b) graph centralities for detecting urban centers and
hubs, and (c) graph community structures for uncovering socioeconomic clusters
defined as neighborhoods and their borders. Finally, results of this network analysis
are projected back onto geographical space to reveal the spatial structure of urban
movements. The revealed community structure shows a clear subdivision into different
areas that separate the population’s activity space into smaller neighborhoods. The
generated borders are different from existing administrative ones. By comparing the
results from 3 years of data, we find that Singapore, even from such a short time series,
is developing rapidly towards a polycentric urban form, where new subcenters and
communities are emerging largely in line with the city’s master plan.
To summarize, our approach yields important insights into urban phenomena gen-

erated by human movements. It represents a quantitative approach to urban analysis,
which explicitly identifies ongoing urban transformations.
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analysis; smart card data
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1. Introduction

Urban spatial structure refers to the arrangement of urban space with respect to the set of
relationships arising out of urban form and its underlying interactions which are composed
of people, freight and materials, and information (Rodrigue et al. 2009). These flows have
strong effects on transportation, economic growth, social equity, and sustainable urban
development, and for a long time, it has been assumed that the actual configuration of
urban form that emerges from such interactions is influential with respect to the efficiency,
equity, and quality of life of a city’s inhabitants. In the past, urban areas have gradually
decentralized from their core market centers, and transformations have led to heteroge-
neous kinds of urban sprawls. Their form has become ever more polycentric consisting of
a complex hierarchy of different kinds of centers, neighborhoods, and communities tied
together by a multiplicity of transport and information systems. These transformations
raise important questions: can one identify this new regime of centers and borders that are
emerging from the way people use space for their daily activities through their interactions
with one another and with different spaces? In the case of planned developments, do these
emerge in the way such development is intended? And can one predict these different
kinds of urban forms as a new hierarchy of clusters in terms of the way centers,
neighborhoods, and their borders are entangled with one another? Such questions moti-
vate our study and there is now a growing amount of recent research, relevant for planners
to validate their designs and to make better use of urban space (Thiemann et al. 2010,
Rinzivillo et al. 2012).

The spatial structure of modern cities has been shaped, in large measure, by advances
in transport and communications (Anas et al. 1998). The complexity of human move-
ments has redefined the usage of urban space and the arrangement of resources. People, as
physical carriers, motivate the transfer of materials, money, people, and information
between areas in urban space. Therefore, taking travel as a proxy for spatial interaction,
we aim to identify the following essential elements of urban spatial structure:

● Hubs refer to the most significant areas that connect spaces between which urban
stocks are transferred. These act within the urban structure as spatial bridges
between different neighborhoods.

● Centers refer to the most relevant areas that accumulate urban stocks, which can
differ from hubs but are very often the same.

● Borders refer to socioeconomic boundaries that are generated by aggregated travel
location choices that subdivide a city into small neighborhoods which we call
communities here.

To detect hubs, centers, and borders, we make use of new data sources that record all
movements on the public transport systems, which in our case study of Singapore is smart
card data from the automatic fare collection system that records the place (stop) and time
where a traveler taps in and/or out of the system. Such data sources provide very good
resolution of urban mobility covering almost all geographic areas in the city and more
than half of the country’s 5 million population who use public transport on a daily basis.
Using such data sets, we can identify the spatial structure of urban hubs and the borders
between them using a variety of network analysis based on the physical properties of the
topological and the weighted travel networks and methods for partitioning the network
into hubs and centers. Our findings reveal that Singapore is developing towards a
polycentric urban form, where new communities are emerging and socioeconomic borders
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changing. In fact, the time series that we use is very short but given the rapidity with
which Singapore is developing – 25 km of metro has been constructed in the last 5 years –
we consider that these data provide some sense of how communities are changing.
Moreover, the data are only available in this form for these three particular years and
although we would prefer a much longer series. We consider this is sufficient to give some
sense of how these methods might be developed when more data are available or for other
cities where such data are available over longer periods and where the speed of develop-
ment is much less than that in Singapore.

To anticipate the ultimate outcomes of our analysis, we show the emergence of
subcenters and communities for Singapore based on the data for 2010, 2011, and 2012
in Figure 1. In this figure, we show three regionalizations or partitions of the Singapore
city-state taken from our network analysis of communities based on Rosvall and
Bergstrom’s (2008) method. Their method detects communities using random walks to
identify the hierarchy of the importance of links and hubs in the network graph, detecting
communities at different levels using an entropy decomposition algorithm. From these
decompositions, we also show how the eight clusters that are defined grow and morph
with one another over the 3-year time series using another technique due to Rosvall et al.

Figure 1. Changing communities and borders detected from daily transportation in Singapore from
2010 to 2012.

Notes: Singapore has been partitioned into smaller neighborhoods emerging from urban movements
(top row). A representative emerging new neighborhood is highlighted in the center row. The overall
partition of the space and the emerging new neighborhoods over the 3-year time series reveals
rapidly changing spatial structure following a polycentric urban transformation. The partitioning of
the urban space is conducted by a community detection method applied to a network of urban
movements. The alluvial diagram (bottom) shows the changing values of network attributes in terms
of significant communities with the highest PageRank (values shown in rectangles), as well as the
changing organization among these communities (interchanging flows). All this is explained in
detail in the sequel.
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(2010), a flow diagram of how these clusters change through time, which they call an
‘alluvial’ diagram. The rest of this paper explains how we come to these conclusions.

We consider that our analysis is novel and useful in the following sense. First, we
provide a quantitative method for detecting urban hubs, centers, and borders as well as
changes in the overall spatial structure of urban movement using daily transportation data,
and present our methods through an appropriate workflow of the way these techniques are
applied. Second, we provide a systematic analysis of linking measured parameters with
real urban phenomena, which is applicable to new methods of identifying communities
based on mobility, and third, we validate our ideas from novel insights into the actual
development of Singapore.

The rest of the paper is organized as follows. In Section 2, we review previous and
related work arguing that the novelty of our approach depends on extracting hubs, centers,
and borders from networks and flows, rather than from the attributes of locations or areas.
In Section 3, we present our approach, the workflow, the explanations of the individual
steps involved, and the technical basis of the methods for decomposing large networks
such as these into distinct network-based communities. In Section 4, we introduce the case
study area, the data set, and we then discuss our results and findings. We conclude in the
fifth and final section where we point to open question and unresolved problems.

2. Related and previous research

2.1. Spatial analysis of movement data

Although our work is motivated by relatively recent issues of urban transformation, it
addresses essentially a classical spatial aggregation problem. Over the last half century,
various urban researchers have developed techniques for decomposing spatially aggregate
data and aggregating individual data to spatial areas or zones. These techniques are
usually based on meeting some criterion such as homogeneity with respect to various
spatial attributes based on demographic, economic, and ethnographic structures, using a
variety of multivariate methods that have emerged from social area analysis, transport
studies, and geographical analysis. Formal tools for deriving mutually exclusive or over-
lapping hierarchies in such data were pioneered in the 1960s (Berry 1967) and these were
extended to interaction data where densities, volumes, and directions of flows formed the
basis for aggregation to specific partitions of the spatial system (Slater 1976, Batty 1978).
In fact, although rudimentary network analyses were developed for spatial partitions using
graph theory (Nystuen and Dacey 1961), it was not until the rise of network science in the
last two decades that a new wave of methods such as the ones we will use here linking
flows to planar and topological graphs were developed.

There is now an increasing momentum in the analysis of networks and flows in cities
using data that are collected routinely from digital sensors that pertain to the movements
of travelers. These kinds of ‘big’ data are being explored with respect to the new insights
it can give into the dynamics of human movement. Many new methods are being applied
to new problems. For instance, statistical analysis of human travel behavior using these
types of transportation data is being conducted in many cities (Park et al. 2008, Liang
et al. 2009, Munizaga and Palma 2012). In established cities such as London, these
patterns of activity and movement are being used to identify the urban spatial structure at
a fine scale (Roth et al. 2011), where real-time smart card (the ‘Oyster-card’ in London)
data of individual person movements are analyzed to identify the polycentric structure and
organization of the central city. In the case of Singapore, stochastic models are being
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developed to estimate dynamic workplace capacities (Ordóñez Medina and Erath 2013),
and to identify urban activities from a synthesis of smart card and survey data (Chakirov
and Erath 2012). New centrality measurement has been proposed to identity functional
centers (Zhong et al. 2013). In other cases, machine learning methods are being intro-
duced to infer land use from mobile phone activity records and zoning regulations (Toole
et al. 2012) while data mining methods are being explored for discovering patterns (Jiang
et al. 2012). The availability of large data sets now enables us to discover and verify these
various patterns and laws (Song et al. 2010, Noulas et al. 2012, Simini et al. 2012). The
detection of urban spatial structure emerging from urban movement in this way is clearly
central to estimating the social, environmental, and economic impact of changed activity
and movement patterns, and there is now an effort to develop spatial statistics to analyze
the spatial impacts of such urban processes, for example, as that reviewed by (Páez and
Scott 2005).

In this work, we aim to develop an integrated method based on a synthesis of network
science and spatial analysis to detect the changing structure of urban space by making use
of new data sources such as smart card data.

2.2. The spatial network approach

Research using network and flow theory with smart card data analysis does not have a
very long history, largely because network science has only very recently been extended
to deal with spatial networks (Barthélemy and Flammini 2008) and smart card data
pertaining to travel on such networks has only just become available. Here, we will
give a short review. Conventional research typically applies network analysis to street
layouts in terms of their urban topology (Cardillo et al. 2006). However, correlation
between the accessibility of a street layout with human movements is controversial and
remains an open question (Hillier and Iida 2005). Many methods based solely on network
topology such as those in space syntax tend to ignore flows, explain urban space, and
form primarily in terms of simple concepts of accessibility based on network properties.
Recent research however has begun to extend this kind of analysis to incorporate
weighted measures, which pertain to human movement data as flows on networks. (Soh
et al. 2010) used the same data source as we do here, but focus their analysis on the transit
system per se, not on urban space that is associated with this. In terms of understanding
urban space, relevant work using network analysis to find geographical borders between
human movements at the regional scale have used GPS tracked vehicle data (Rinzivillo
et al. 2012), telephone data sets at national scales (Ratti et al. 2010), and air transportation
data at national and global scales (Guimerà et al. 2005, Thiemann et al. 2010). Theses
‘border’ effects were demonstrated by in (Szell et al. 2012) as a mechanism behind human
movement using data from a multiplayer online game. There is other work regarding
regularity of human mobility with network approaches, like in (Sun et al. 2013) where a
time-resolved in-vehicle social encounter network on the public bus was constructed to
discover the hidden encounter small-world in ‘familiar strangers’ daily life.

This work is motivated by the need to elaborate how properties and configurations of
spatial networks can be used to interpret structures of urban movement with specific
reference to strong urban planning strategies. Extending previous work, we combine
network analysis and spatial statistics and apply the approach to data of different years.
Using such combination, changes in urban structure can be effectively detected from the
changing distributions of network and spatial properties. In addition, we use smart card
data, which is comparatively new but being rapidly introduced for the biggest transit

International Journal of Geographical Information Science 5
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systems worldwide, generating millions of records per day. In Figure 2, we show a
schematic of how the flows of materials, money, people, information, and so on between
origins and destinations that we treat as stops on the travel network can be generalized to
activities within an urban space around the points in question. We aggregate trips between
stops to provide a measure of activity that we compute similarities for in the analysis that
follows, and from this, we are able to define the borders around the urban spaces in
question. This provides us with proxies for the physical transfer of urban stocks between
places and although these are a crude simplification of the homogeneity and heterogeneity
of well-defined urban spaces, they represent a first attempt at defining such places with
respect to flow networks, linking ideas about regionalization from the 1960s to contem-
porary network approaches.

3. The method of analysis: urban spaces from network flow data

We propose a method that integrates network and spatial analysis based on a workflow
that combines the three stages shown in Figure 3. This starts out with the smart card data
obtained from automatic fare collection systems as the input data set to the pipeline. From

Figure 2. A Voronoi map defining urban spaces generated from the stop locations on the travel
network.

Note: People traveling between stops create the physical interactions between any two areas, and
this human movement is a proxy for the transfer of urban stocks such as materials products, money,
people, information, diseases, and so on.

Figure 3. Workflow of the proposed method of analysis.

6 C. Zhong et al.
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these data sets, we construct a weighted directed graph that is central to the network
analysis that we report below in three subsections. The network analysis includes deriving
the basic graph properties that we use to measure various centralities (accessibilities) and
from which we derive the different community structures that in turn are associated with
the geographical partition of the city into hubs, centers, and their borders. These basic
properties provide an overall view of travel demand and interactions in the city. Centrality
is used to identify the relative positioning of local areas in the more global spatial
structure defining hubs through ‘betweenness centrality’ measures, centers through the
equivalent of ‘page rank’ analysis, while ‘community detection’ of network clusters is
used to understand the spatial organization of these interaction patterns. The computed
results are then mapped onto geographic space, not only for providing an immediate
intuitive visualization, but also for further analysis of the spatial impacts using various
spatial statistics. We then apply spatial interpolation based on various attributes associated
with the stops – the origins and destinations – using the typical distance function to
generate what we call the human movement landscape. From this landscape, hubs and
centers appear. Summary statistics are finally used to group spatial units of any one
community into neighborhoods, from which new borders defining the partition into a
contiguous landscape of social–economic spaces are generated. From local scale to global
scale, these spaces represent the structure generated by urban movements.

3.1. Network construction and representation

The recorded smart card data contains detailed information on each trip, including trip id,
passenger id, age, boarding and alighting time, boarding and alighting location, distance,
fare, and an index associated with transfer trips. We first construct an O–D (origin–
destination) matrix of travel (trip volumes) between all areas, and then convert it to a
weighted directed network. Rather than a travel network, we constructed a social network
formed by physical urban activities.

Formally, we define a directed weighted graph as G;ðN ; L;W Þ that represents the
overall travel on every pair of links in the city during an average workday. It consists of a
set N of stops or nodes denoting areas around locations, a set L denoting travel between
any two areas, such that L is a set of ordered pairs of elements of N , and a set W denoting
the volume of travel – numbers of trips – between any two areas. Hence,
N ¼ fn1; n2; n3; :::; nIg are the nodes of the graph G, and L ¼ fl1; l2; l3; :::; lJg are the
J edges of graph G with associated weights W ¼ fw1;w2;w3; :::; wJg.

3.2. Complex network analysis

‘Network anatomy is important to characterize because structure affects function and vice-
versa’ (Doursat 2005). As indicated previously, we approach network analysis from three
perspectives: its global properties, local information pertaining to city hubs and centers,
and community detection to identify neighborhoods and their borders. We deal with these
in turn.

3.2.1. Global properties

The basic topological and planar properties of a network can reveal important information
on spatial interactions. This gives us an overall view of changing travel demands, in
particular,
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● the number I of nodes indicates how many areas are accessible in total, and the
number J of edges indicates how many areas are directly connected to each other;

● the degree of each network node denotes how many areas are directly connected to
an area from any other, in terms of their in-degrees – those which contain trip
volumes that are destined for that area and out-degrees – those that originate from
that area;

● the strength is the weighted degree that indicates intensity of travel – trip volumes –
to and from one area;

● the shortest path refers the minimum network distance possible from one area to
another area;

● the clustering centrality is an index that measures how ‘close’/‘cohesive’ the areas
are to one another in terms of their accessibility to shared neighbors; and

● the closeness centrality is an index that evaluates how fast information spreads in
the whole area.

By comparing these properties, we can figure out if urban interactions within a city, which
are the key elements in the associated weighted graph, are becoming more active or
passive with respect to location, and the extent and degree to which these locations are
changing or remaining stable.

3.2.2. Local centrality

Beyond global properties, we now define two kinds of centrality, the first, which is the
well-known measure of betweenness centrality, which we use for our definition of a hub
and second, the PageRank which is a measure of accessibility in the network taking
account of all direct and indirect links, their weights and their directions. This is a measure
we use to define the degree to which each node is a center.

The hub index. Betweenness centrality is an index that measures how well-connected an
area is and is key to identifying city hubs. The betweenness centrality of a node k is the
number of shortest paths connecting any two areas (nodes) i and j in the graph that pass
through the node k. A node has a higher centrality CbetweennessðkÞ the greater the number of
shortest paths that traverse it and is defined as follows:

Cbetweennss kð Þ ¼
X
ij

δij kð Þ�δij (1)

where δijðkÞ is the number of shortest paths between any two nodes i and j that pass
through k and δij is the total number of such paths between i and j. Sometimes, this
measure is normalized with respect to the total number of nodes N but here we will use it
in this basic form.

The center index. PageRank measures the role of a node or local area in attracting flows
from all nodes in the network. The measure is a generic representation of the probability
of any random walker on a network visiting a particular node and in this sense, it relates
directly to a first-order (Markov) probability process that is the basis for many processes
of social interaction. In this context, it was originally used for extracting information
about Internet link structures and the measure we use here is based on (Rosvall and

8 C. Zhong et al.
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Bergstrom 2008) method in which they determine the importance of nodes in a network in
analogy to Google’s PageRank (Brin and Page 1998). In fact, this measure is implicit in
the community detection algorithm that is used below to determine community structures.
The probability rj of visiting any node j (or in Google’s term, the ‘page rank’ that is
represented as a probability between 0 and 1) is defined as follows:

rj ¼ 1� ρð Þ=N½ � þ ρ
X
i

ripij (2)

where 1� ρ is the probability of the walker j making a random switch to any other node
in the network and pij is the probability of making a switch from node i to j which is
proportional to the trip weight on the link i to j, that is

pij ¼ wij

�X
k

wik ; and
X
j

pij ¼ 1 (3)

The steady state probability frjg is computed by solving the linear simultaneous equations
in Equation (2) using iteration, the power method, or the appropriate matrix inversion
method. The parameter ρ is a damping factor, which can be set between 0 and 1, but
usually is set to 0.85, which we use in this application. If ρ ¼ 1, then for all nodes to have
a positive probability (for all pages to have a rank), the matrix fpijg must be strongly
connected.

3.2.3. Community structure

Besides local information, the organization of components (i.e., the ‘communities’) of the
network is crucial for understanding spatial structures. The borders, which subdivide the
whole land area, which is covered by the network into smaller neighborhoods, are
obtained by detecting what is called community structure in network science. The
Border Descriptor is generated by partitioning the network into two levels where the
nodes form modules, which are communities, and the divisions between the modules are
the borders. In the case of the network we are dealing with here, we concerned that
identifying communities based on the density and interactions of flows that within each
community are stronger and in volume terms greater than those between communities: in
short, we wish to partition the networks into mutually exclusive clusters that are
communities.

Detecting communities in networks has been a fundamental problem in complex
network analysis for many years. According to the comparative analysis of different
methods (Lancichinetti and Fortunato 2009), the map equation approach called Infomap
developed by (Rosvall and Bergstrom 2008) is one of the recent algorithms that has
shown excellent performance in generating such a two-level hierarchy of clusters and in
addition, it is one of the few algorithms suitable for weighted and directed networks.
Moreover, Infomap considers not only pairwise-relationships, which most partitioning
algorithms work with, but also flows between pairs of nodes. It uses the probability flows
created from random walks on the graph and the probabilities of visiting a node at random
(which is the same as the PageRank above) as a proxy for information flows in a real
system. It then decomposes the network into clusters by compressing a description of the
probability flow in such a way that the average description posed by the probabilities
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associated with each community and those of the nodes within each community are the
most dense and have minimum entropy. In short, the algorithm divides the nodes of the
graph into modules or communities that are highly structured, which implies a minimum
in the entropy of the partitioned graph.

This entropy is essentially a subdivision of the total entropy of the system into entropy
between the modules and a weighted entropy between the modules, these weights being
related to the probabilities of the occurrence of each module. Rosvall and Bergstrom
(2008) define this entropy as follows:

Lg Mð Þ ¼ H Pð Þ þPm
i¼1

PiH pð Þi

¼ �p
Pm
i
Pi logPi �

Pm
i¼1

Pi
PMi

k¼1

pk
Pi

log
pk
Pi

9>>=
>>;
; Pi ¼

X
k

pk (4)

where Pi is the probability of the module m being visited and pk=Pi is the probability of
the node k which is part of module Mi being visited. These probabilities are not the actual
page ranks but the page ranks modified by appropriate exit probabilities as defined in
detail by Rosvall and Bergstrom (2008). The way the algorithm works is by first setting
each node in its own module and then at each step identifying the node that can be added
to a module that decreases the overall entropy in Equation (4). This process continues
until no further reduction in entropy can take place and at this point, the number of
modules provides a distribution of nodes within communities that is the most organized.
Note that Mi is a module, which contains a series of nodes k 2 Mi that become stable
when the algorithm has converged to minimum entropy. Like all such iterative optimiza-
tion procedures, simulated annealing or a related procedure is used to ensure that the
likelihood that the true optimum has been reached is maximized. This then gives the
distribution of nodes, or stops in this case, within each community and this distribution is
then mapped to geographical locations.

3.3. Geographical mapping and interpolation

Besides the basic geospatial operations such as geo-referencing, intersection, and map-
ping, spatial interpolation and summary statistics are the tools we use to transform the
discrete network nodes into structured regions.

3.3.1. Spatial interpolation

Spatial interpolation is first applied to generate a movement landscape based on both
centrality indices. Such a landscape portrays the properties of each area according to some
sample points that in our case are the stops surrounding the area in question where we
assume that people choose the nearest stop to their destinations. We thus apply interpola-
tion to the nearest neighbors of each stop. Although there are many variants of interpola-
tion, we use inverse distance weighting (IDW) where each measured point has a local
influence that diminishes with distance. The method weights the points closer to the
particular location more highly than those further away, and the weights are defined
generically for each point as follows:

10 C. Zhong et al.
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Wi x; yð Þ ¼ 1
.
dij x; yð Þλ (5)

where Wiðx; yÞ is the weight of the location around the point i at coordinates x; y which are
nearest neighbor points to j and dijðx; yÞ is the distance at x; y from point i towards the
nearest neighbor point j. Note that the weights are normalized around a particular point to
sum to 1, that is

P
"x;y Wiðx; yÞ ¼ 1, and λ is a parameter which is set here as 2, which

implies an inverse square law.

3.3.2. Summary statistics

Summary statistics are then used to assign a community to individual spatial units based
on the sampled points. The main problem here is to deal with noisy points, which refer to
points that belong to a community in network space but are not geographically adjacent to
the main cluster defining that community. This clearly emerges because the community
detection algorithm is not constrained to achieve geographically contiguous areas, and
thus, the communities that are initially detected may have non-contiguous parts in the
two-dimensional space. This situation does not occur very often but when it does, it
typically occurs in boundary areas where people have different travel preference to nearby
centers. To remove these fuzzy boundaries and the noisy points, we essentially count the
number of points in different communities and compute a page rank. We then assign
boundary points to the nearest communities with the highest page ranks and in this way
move boundary points to their geographically closest community where there is ambiguity
at their borders. In this way, compact and geographically intact communities are produced
which are geographically contiguous and exhaust the whole space. We will now use the
pipeline of network processes in the analysis of the smart card data shown in Figure 3 to
generate hubs, centers, and borders between the various communities that define the
transportation flow patterns on the public transport system in Singapore.

4. Applications to Singapore

4.1. Salient urban characteristics

Singapore is an island city-state with an area of 710 km2 and a current population of
approximately 5.3 million, of whom about 62% (or 3.29 million) are residents, the rest
being foreign workers or their dependents. Urban planning and transportation planning
have a strong influence on each other and have visibly impacted on Singapore’s urban
development through a tight planning system that is particularly vigilant with respect to
the location of housing and industry. From the 1970s, transportation planning has been a
prominent tool in shaping the structure of the city. In 1987, the first line in the Singapore
Mass Rapid Transit (MRT) system was opened and the system now covers 102 subway
stations, with particularly fast development of the system during the last 5 years with
several new lines opening. Today, the land-based public transportation system in
Singapore comprises two networks: the MRT and the bus system and more than half of
the population are now using public transportation as their main transport mode (Cheong
and Toh 2010).

The collected tap-in/tap-out events offer a huge data set, with around 5 million daily
travel records, which we have been able to access as smart card data provided by the
Singapore Land Transport Authority. This study was conducted using the available smart
card records over three sets of workdays in September 2010, April 2011, and September
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2012. With data sets in different years, we can begin to evaluate the feasibility of our
method in exploring emerging spatial structure in Singapore. A period of 3 years given by
three cross sections is a fairly short time to observe changes of urban structure. However,
a yearly population growth of nearly 3% per year in Singapore over the last decade may
contributes to significant changes even for a short time.

4.2. Mapping travel in Singapore

As indicated previously, an O–D (origin–destination) trip volume matrix is constructed
from the original smart card data. Each node in this network denotes an area with one stop
inside. From a preliminary analysis of five working days of data, we found that the overall
travel activity in Singapore using public transportation system reveals a very regular
pattern with the usual morning and evening peaks. The peak hours appear almost exactly
at the same time every working day in the same areas and the overall distribution curves
are similarly shaped to one another. Therefore, the network we constructed represents
urban movement on an average working day and covers the whole array of daily activity
types. After data processing, there are 621,731 edges linking 4638 nodes from the 2010
data, 702,803 edges linking 4716 nodes from 2011 data, and 730,885 edges linking 4727
nodes from the 2012 data. Network properties and indices were computed using the
i-graph package on the R platform (http://igraph.sourceforge.net/). Community structure
was generated using the tool Map Equation (http://www.mapequation.org/). Spatial ana-
lysis was conducted on the ArcGIS platform (http://www.arcgis.com/).

Figure 4 illustrates of two types of mapping. The left image shows the network
mapping at an early stage in the workflow and highlights structure but neglects geogra-
phical information so that local changes cannot be detected. On the other hand, the image
on the right shows a traditional geographical mapping from which structures can be barely
identified, but local relevance is clearly visible. Thus, we attempted to combine the two
representations in order to obtain the missing information.

4.3. An overall view of urban movement

Table 1 shows the global network properties for the years 2010, 2011, and 2012, and from
the table, some changes can easily be recognized: the number of edges has increased
meaning that more areas in Singapore are connected due to increases in the bus and MRT
system infrastructures. Strength in terms of trip volume has increased both in total and on
average, meaning that the demand for public transportation has been increasing. The
lengths of shortest paths have decreased slightly indicating closer connections among
areas. The increasing average degree means that each BUS/MRT stop has more connec-
tions to other stops/stations, though the total number of stops and stations did not increase
from 2010 to 2011. What has led to this increase is probably due to the newly added bus
lines and more active human behavior due to an increase in economic and related demand.
We can thus say that Singapore is becoming increasingly connected. Though traffic jams
still exist, increasing clustering centrality and decreasing closeness centrality shows that
transferring between lines and modes in Singapore has gradually become more convenient
and efficient. Such observations are consistent with other works such as (Cheong and Toh
2010), who have used travel surveys from different years for comparison. These surveys
are conducted every 4–5 years, but cover only 1% of households in Singapore giving
about 100,000 records. According to these statistics, there are more than 2 million people
using the two transit systems, which generate some 5 million daily records. This clearly
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means that extracting smart card data provides more information with respect to making
travel behavior more efficient. In addition, traditional surveys consume much more man-
power and time.

In the next two sections, we link the various generated parameters from this analysis
to certain urban phenomena. We compare the data from different years to show urban
change, which is the main objective of this paper. To verify our explanations, we have
compared our results with other results in the related literature and to the various urban
plans produced for Singapore, and this enables us to draw both qualitative and quantita-
tive conclusions from this analysis.

4.4. City hubs and centers – anomalous centrality

Figure 5 shows a plot of the degree and average trip strength for the years 2010, 2011, and
2012. In the constructed network of human movement, there are a limited number of areas

Figure 4. Two varieties of network mapping.

(a) The weighted directed graph constructed from smart card data; nodes represent the module it
belongs to, and the larger the nodes, the higher the total PageRank of its module. (b) Nodes mapped
into geographical space in proportion to analyzed property values, in this case by node degree that is
mapped to node size.
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that have very high and intense connections to the other areas. Together with the relative
short length of the shortest paths in the network, this is indicative of the ‘small world’
phenomena in the network over each of the years. We must however be cautious of
drawing too strong a conclusion in this regard because we are dealing with spatial graphs,
which tend to be planar and in their pure form, do not demonstrate small worlds. In
Figure 6, we compare the distribution of degrees in 2010, 2011, and 2012 and find that
this distribution is becoming slightly more even over time. In other words, it appears that
travelers have more diverse location choices for their activities and their average activity
spaces are becoming larger.

To gain a deeper understanding of the distributions of these locations, we have
projected the various indices into geographical space to determine the locations of hubs
and centers. Shown in Figures 7 and 8 are two interpolated maps of our computed
centrality index, namely betweenness centrality and PageRank. By comparing these two
maps, an anomalous distribution appears in those city hubs that are most efficiently
connected, but are not necessarily the most central areas. This is a finding that is implicit
in our observations even though it tends to fight against our intuition about the role of
centrality and accessibility in cities, which traditionally have been monocentric. More
specifically in Figure 8, the PageRank map shows that the central area is one of the most
visited and most significant places, but also shows that the most efficiently connected
areas are not only found in the city center, but in many other areas across the whole island.

Figure 5. Degree and average trip strength distribution in 2010, 2011, and 2012.

Table 1. A comparison of basic network analysis parameters with data from 2010, 2011, and 2012.

Year of smart card data 2010 2011 2012

Number of nodes BUS: 4599 MRT: 107 BUS: 4599 MRT: 107 BUS: 4599 MRT: 117
Number of edges 621,730 702,052 725,046
Average degree 131.8342 148.866 153.4164
Average trip volume

by weighted edges
645.5789 788.577 801.2078

Average shortest path
length by edges

2.229015 2.196655 2.185142

Clustering centrality 0.2116035 0.2238426 0.2268748
Closeness centrality 1.161199e-06 1.170022e-06 1.085218e-06
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Indeed, we find that these hub locations are almost perfect matches with key points
defined by the MRT lines. This means that the MRT lines have a significant position and
serve as the wider skeleton linking all regions of the city-state together. In fact, this
finding is consistent with Singapore’s physical concept plans. Back in the 1970s, trans-
portation was prominently considered in shaping the structure of the city. According to the
various concept plans, high-density public housing areas were planned along high-capa-
city public transportation lines, near to industrial areas and to other employment. And to
an extent, this is now borne out in the patterns of accessibility and transport usage
revealed from the smart card data.

The network landscapes are also changing like natural landscapes but these are driven
by multiple forces, including new development in the city, advances in the infrastructure
of the transportation system, and the way peoples’ individual choices have been

Figure 6. Changing degree distributions in 2010, 2011, and 2012 with the overall distribution
becoming slightly more even.

Note: There are few nodes with a very high degree, which results in a very broad tail of the degree
distribution. For a better view, we show degrees <1200, shown in a magnified figure (top right).

Figure 7. Interpolated betweenness centrality landscape for 2011.

Note: The areas in red are detected hubs that are consistent with locations of the MRT stations.
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augmented. From Figure 9, we can see that the number of areas with lower betweenness
centrality have slightly decreased, while the number of areas with higher betweenness
centrality have increased. This indicates that the most connected areas (the city hubs)
largely coincide with MRT stations and these are likely to function more intensively. It
also means that the development of the MRT promotes longer distance travel because the
population can easily travel to areas that are more central from anywhere in the system.
From Figure 10, we have found only slight changes in structure from the PageRank
distribution. In general, if the number of highly centered areas has deceased while the
number of secondary centered areas has increased, this implies a polycentric urban
transformation where the influence of strong center areas has gradually relaxed, their
centrality increasingly shared with emerging subcenters. However, the slight changes in
Figure 10 as well as Figure 9 do not provide us with very strong evidence of urban
transformation. As a supplementary analysis, we can reinforce this interpretation from the
generated borders of urban movement within different communities that we describe in
the next section.

Figure 9. Changing distributions of Betweenness Centrality in 2010, 2011, and 2012.

Notes: The overall distribution becomes more concentrated. Higher Betweenness Centrality is
associated with fewer areas.

Figure 8. Interpolated PageRank landscape of Singapore for 2011.

Note: The areas in red are detected centers.
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4.5. Borders and new neighborhoods – entangled community structure

Borders are important elements that subdivide the entire space into smaller communities.
These serve as an important reference for measuring and analyzing the urban data in terms
of the original urban structure, the administrative borders, and older city centers, which
were planned throughout the twentieth century. They are historical markers that represent
past human interactions during the last 100 years. In this section, we generate the
geographical borders based on community structure detection and compare these to
Singapore’s concept plan. The changing communities in terms of volume of flows,
number of communities, and their sequences were previously shown in Figure 1, using
the concept of the alluvial diagram due to (Rosvall et al. 2010) based on data taken from
the different community clusters at the three points in time 2010, 2011, and 2012, which
we outlined in the previous section. Since our focus is on detecting change, we use only
first layer of community clusters. In the case of Singapore, only this layer of communities
generates clear geographical partitions of neighborhoods. At lower spatial levels, the
neighborhoods are entangled, which indicates a random distribution of peoples’ activities
in smaller spatial areas.

Zooming into the results for 2012 shown in Figure 11, Singapore can be subdivided
into nine small regions that are the most significant communities detected from the
network analysis. To clean up the noise in these results, we have aggregated them into
subzones equivalent to the smallest levels of geographical subdivision used in Singapore’s
national statistics. More specifically, we use subzones as the basic spatial unit and then
assign them to the most significant communities, which cover the subzones in question.
Summing the PageRanks determines the most significant community. The original results
before data cleaning can be found in Figure 12.

As introduced earlier, the actual network contains no geographic information per se.
The community structure is generated from the natural patterns within the network itself.
However, after several iterations of the detection algorithm, a clear territorial subdivision
emerges, which is consistent with many groupings in cities where people do divide into
groups along lines of interest, occupation, age, and so on (Newman 2003). In urban
movement, areas can also be divided into groups classified by factors involving the
economy and its function. These results show that spatial impact is the most prominent
factor that influences people movement in cities and their interaction. When comparing
the generated borders of human movement in 2012 that we have extracted and focused

Figure 10. Changing distributions of PageRank in 2010, 2011, and 2012.

Note: The overall distribution shows slight changes while the number of highly centered areas
slightly decreases.
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upon to administrative borders, it is clear that these borders have shifted a little bit west
because of the development of new centers such as the Jurong East area in the west.

At a larger scale, this phenomenon also matches the planned ‘decentralization of urban
form’ which was part of the revised concept plan of 1991 where the emphasis was on

Figure 11. Borders defining communities of urban movement in 2012.

Notes: Community structure detected from smart card data using Infomap marked in different
colors. The black boundaries indicate the original administrative borders. In the right corner, planned
decentralization of urban form is drawn based on the 1991 concept plan, which is quite in line with
the overall structure of urban movements.

Figure 12. Changing communities from (a) 2010 (b) 2011 (c) 2012.

Note: Nodes denote stops and colors indicate which community they belong to.

18 C. Zhong et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 1
1:

43
 1

3 
O

ct
ob

er
 2

01
4 



facilitating sustainable economic growth through the idea of decentralization. The city
was then planned to be surrounded by four regional centers, located in the west, north,
northeast, and east, several subcenters and fringe centers, as we show in the inset in
Figure 11. This decentralization is part of a top-down panning process that will likely take
decades to realize as some sub-centers are still under development. Detecting these trends
of change does indeed provide deeper information for planners and designers to evaluate
their plans or to link these plans to their actual realization on the ground.

We attempt here to track the path of changes by comparing the analyzed results of the
data in 2010, 2011, and 2012 as shown originally in Figure 1. We found that though there
are some significant changes in flows between communities, the most important commu-
nities remain the same, with only a few changes in their sequence with respect to their
summed PageRanks. An obvious and gradual change from 2010 to 2011 shows there is an
emerging new community. When mapping the nodes as shown in Figure 12, we found
that all the nodes in this new community are located in one area, the Bishan, Toa Payoh,
and east Novena area. If we refer to the concept plan of new centers shown in Figure 11,
the emerging subcommunity consists of one of the subcenters and this suggests that
Singapore is slowly becoming more polycentric. Moreover, the emergence of this new
community has occurred within only 1 year, illustrating the rapidity of the urban devel-
opment process in Singapore. The fact that this is only a snapshot of change means that
we cannot be certain that these patterns imply the ultimate outcome of these development
processes in Singapore.

When comparing these results from 2010 to 2011, we found certain differences with
respect to the flows. The difference of the PageRank among communities even out a little,
which means, the share of flows to each community becomes more balanced. From the
geographic perspective, we can see that the areal sizes of communities also becomes even.
In addition, an interesting finding is that the south-west area, which is an isolated area in
2011, disappears and is dissolved in adjacent neighborhoods in 2012. The reason for this
change is likely to be because of the extension of the MRT lines, which started operation
across this area in early 2012, making this region much more accessible to the rest of the
network. Even over this short period, our results show how quickly and how strong the
transit system influences the pattern of urban movement and the communities that define
it. In summary, all these insights from the analysis reveal that the Singapore urban system
is becoming ever more polycentric and diverse as developments spread throughout the
city-state.

5. Conclusions and future work

Our analysis has revealed an alternative approach to the study of urban dynamics from the
traditional more macro analysis of urban structure, and this is primarily due to the
availability of new data sources and techniques. Changes in movement, which are not
easy to spot in the original data mapping, can be detected through changing centrality and
community detection. A qualitative interpretation of the various quantitative indices is
also given here and this enriches the analysis with a semantic interpretation that is
meaningful to urban planning applications. The results show that even at the urban
scale, collective movement still can shape geographic communities as happens in social
networks. The methods which we have used can also be applied to other forms of urban
movement analysis such as food chain analysis, package delivery, and other systems that
involve flow data such as migration, trade, various materials, and of course information
between different spatial locations.
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This research is only one example of using big data to infer the changes in urban
processes and as such this is a prototype. There is still much potential for developing this
research further in particular to focus on the periods of time over which we are able to
assess change for which we are currently limited by the availability of data. The data sets
that we have used have only become available recently and it is likely that we will need a
much longer series and a higher temporal resolution before we are able to definitively
demonstrate the ultimate pattern of diversity and polycentricity that Singapore is becom-
ing. Moreover, our analysis is limited by the fact that we only use public transportation
data here but the public transit system does cover the geographical extent of the city, and
as over half of the population uses public transport, we have some confidence that our
analysis is revealing relevant trends. The resolution of the data is also good enough to
represent the whole urban area, but if we were able to fuse this with other data sources
such as taxi and private car data, the analysis could certainly be more accurate. The
limitations to our analysis posed by only 3 years of data implies it is clearly not sufficient
to depict the path of urban processes and the detailed sequence of urban change but in
time we should be able to resolve this. As new data becomes available each year, this type
of analysis should be deepened and updated. This prospect has not been possible before
but in the case of this research, we stand at the threshold of mounting a long-term project
for this kind of travel analysis. Moreover, as follow up work to this paper, further analysis
will be done, for instance, using a node-based community detection method to uncover
the overlapping and hierarchical neighborhoods; comparing differences in movements
between weekdays and weekends; and finding out the causes and sequences of change by
adding other thematic data sets using appropriate multivariate methods.

In sum, there is still much to do by focusing on integrated techniques using multiple
data sources for studying urban processes. This will undoubtedly contribute to a better
understanding of urban dynamics, in terms of human behavior, movements, and urban
processes, and we believe the template we have established here shows the direction in
which we should go.
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