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Cities are complex systems. They contain different functional areas originally defined by planning and
then reshaped by actual needs and use by the inhabitants. Estimating the functions of urban space is
of significant importance for detecting urban problems, evaluating planning strategies, and supporting
policy making. In light of the potential of data mining and spatial analysis techniques for urban analysis,
this paper proposes a method to infer urban functions at the building level using transportation data
obtained from surveys and smart card systems. Specifically, we establish a two-step framework making
use of the spatial relationships between trips, stops, and buildings. Firstly, information about the travel
purposes for daily activities is deduced using passengers’ mobility patterns based on a probabilistic
Bayesian model. Secondly, building functions are inferred by linking daily activities to the buildings sur-
rounding the stops based on spatial statistics. We demonstrate the proposed method using large-scale
public transportation data from two areas of Singapore. Our method is applied to identify building
functions at building level. The result is verified with master plan, street view, and investigated data,
and limitations are identified. Our work shows that the presented method is applicable in practice with
a good accuracy. In a broader context, it shows the effectiveness of applying integrated techniques to
combine multi-source data in order to make insights about social activities and complex urban space.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Urban systems are composed of many different forms of func-
tional areas, which interact with one another to generate the com-
plexity that defines a city. These functional areas are historically
associated with many urban processes, some related to the institu-
tions that are used to support planning but most being shaped by
individuals’ actual needs through processes of bottom-up change.
In this spirit, Jane (1961) described cities as ‘problems of organized
complexity’. Taking a small park as an example, she argued that
‘‘. . . even this partial influence of the park’s design upon the park’s
use depends, in turn, on who is around to use the park and when,
and this in turn depends on uses of the city outside the park
itself. . .’’. Similarly, in the book by Rodrigue (2013), land uses are
defined in two ways. Formal land use refers to its form, pattern,
and aspect, while functional land use refers to its socioeconomic
description in space. The latter aspect is likely to imply higher
levels of dynamic temporal change compared to the former as
activities change faster than the physical locations and land uses
that contain them. As discussed in Green (2007), functional
changes in cities are not tied to morphological changes. In places
such as Singapore, it is crucial to understand urban functions and
their compatibility with the original Master Plan, which is very
important to the development of the urban system, and the current
push in understanding the dynamics of urban areas requires costly
cross-sectional survey data, which in principle should be used to
dynamically update information. As a potential solution to these
problems, only recently has the availability of multiple location
data sources, such as GSM traces, Wi-Fi data, GPS traces from taxis
and smart-card data, emerged, and this is, for the first time, greatly
stimulating the use of these ‘‘big’’ data sets for urban analysis. As it
implies in Yuan, Zheng, and Xie (2012) that regions of different
functions in a city can be detected using human mobility data
and points of interest data. In Roth and et al. (2011), the character-
istics of a polycentric urban form are defined from the analysis of
large-scale, real-time smart-card data from which individuals’
movement patterns can be inferred.
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The motivation for our study is to measure the structure and
form of urban spaces in terms of real functions associated with
urban land use using newly available ‘big data’ and, in this way,
to explore the potential of using smart-card data to infer urban
functions. To do this, we deduce information about individuals’ tra-
vel purposes for daily activities from mobility patterns so that we
can link these activities to specific locations to detect building
functions. A two-step framework that makes use of the spatial rela-
tions between trips, bus stops, and building plots is presented. In
this framework, we first analyze the survey data to find the mobil-
ity patterns of typical travel purposes based on travel time, activity
time, and travel frequency. The analyzed results are then used for
trip classification of the smart-card data using a probabilistic
model. By analyzing the distribution of bus trips from each stop
to the surrounding buildings, we can infer the most likely function
of the building using a standard inverse distance weight function.
The data used in this study are the Household Interview Travel Sur-
vey (HITS) and seven-day smart-card data obtained in Singapore
from the Land Transport Authority, which pertain to all public
transport usage. In an exploratory manner, we apply the method
at the building level as the main focus of this paper. However, a
more reasonable result is achieved at the block level due to the vol-
ume and resolution of the data, and we discuss the implications of
this issue here. The inferred functions reflect the real use of urban
space, which can be used to verify independent observations from
various original plans. Moreover, corresponding results from dif-
ferent time series can be further used to detect the changes in
activity location choice.

This paper develops three main contributions. First, we apply a
probabilistic model to infer the travel purpose of a trip using spa-
tiotemporal as well as socially related information. This enables us
to explore a method of studying urban spaces through peoples’
mobility patterns. Second, we propose a framework to infer build-
ing functions by combining multi-source data, namely, survey data
and smart-card data, while integrating data mining techniques
using a spatial statistical method. Third, the proposed method is
demonstrated with real data collected in Singapore. Consequently,
this study is focused on investigating the potential of using big data
to infer the dynamics of various space functions, and we believe
that this is one of the first attempts anywhere to extract activity
and land usage data in this manner. The remainder of the paper
is organized as follows. In the next section, related works are
reviewed. In Section 3, the proposed methodology is presented,
including the terminology, framework, and details of the probabi-
listic model. Section 4 discusses the experiments demonstrating
the proposed method using the Household Interview Transporta-
tion Study (HITS) and the smart-card data. Section 5 concludes
the paper and discusses further research.
2. Related work: Discovering functional areas in cities from
movement data

Assessing the functions of urban spaces in terms of land use
types is of significant importance for understanding urban prob-
lems (Taleai et al., 2007) and for evaluating planning strategies
(Kajtazi, 2010). However, assessing urban functionality requires
costly survey methods such as field investigation and interview
questionnaires. In addition to the amount of manpower and time
involved, the reliability of information is heavily influenced by sub-
jective factors such as the time, place, and investigator’s personal
experience. The development of techniques based on Geographic
Information Systems (GIS) and the availability of multiple data
sources, such as GSM traces on cars, trains and taxis; mobile phone
calls; Wi-Fi data; and smart-card systems, provide us with alterna-
tive solutions and change the way we can approach urban analysis.
Valuable insights have been gained regarding social activity and
the complexity of urban space through analyses of movement data
because urban travel is a good proxy for the transfer of urban flows,
such as people, material products, and energy, thus revealing the
importance of temporal dynamics in cities. Findings have been
achieved from exploring such dynamics, for instance, using mobile
telephone position data to analyze daily activity patterns
(Phithakkitnukoon et al., 2010; Ratti et al., 2006), comparing the
differences in temporal patterns with respect to the consumption
of space (Ahas et al., 2010), studying spatiotemporal structures of
urban mobility at a large scale (Sun et al., 2011) and classifying
land uses based on aggregated data (Pei et al., 2014). The GPS tra-
jectories of taxi cabs traveling in urban areas provide detailed loca-
tion information, and in (Qi et al., 2011), the on-entrance/off-exit
frequencies of taxi passengers were used to depict social activities
in a region. Similarly, temporal patterns of pick-ups and drop-offs
have been analyzed and associated with different land-use features
in Liu and et al. (2012). In Yuan et al. (2012), taxi data combined
with points of interests (POIs) were used to discover regions with
different functionalities in a city. Some discussions regarding the
opportunities and challenges of using various location data can
be found in Lu and Liu (2012).

As smart-card payment systems are rapidly being adopted in
cities around the world, they have also become an important data
source that produces large quantities of very detailed data about an
individual’s daily travel (Pelletier, Trépanier, & Morency, 2009). In
Quebec, data mining methods and public transport planning mod-
els have been used to obtain an improved portrait of users’ travel
behavior, and this has been tested using twelve one-week records
(Agard, Morency, & Trépanier, 2006). In Seoul, a study was con-
ducted by Park, Kim, and Lim (2008), in which boarding times
and disembarking times were mapped and analyzed to prove the
reliability of smart-card data. Liang and et al. (2009) investigated
spatiotemporal human mobility patterns using smart-card data
in Shenzhen, China, while (Munizaga & Palma, 2012) estimated a
public transport O-D matrix from smart-card and GPS data in San-
tiago, Chile for transport systems analysis. In a study by Roth et al.
(2011), data were collected from the smart-card system in the Lon-
don tube, which is based on the Oyster card system, and were used
to infer the statistical properties of individual movement patterns
and to identify the polycentric nature of the various transport hubs
in central London.

A clear trend that is revealed from this brief survey is in the
exploration of the potential of using ‘big’ positional (geospatial)
data for the analysis of urban forms, as proposed in Ratti and
et al. (2006). In line with such trend, there are new methods of
urban analysis emerging. For instance, discrete choice models can
be used to estimate dynamic workplace capacities (Ordóñez
Medina & Erath, 2013), identify urban activities from a synthesis
of smart-card and survey data (Chakirov & Erath, 2012) and dis-
cover different functional regions within a city using floating car
and point of interest data (Yuan et al., 2012). Machine learning
methods are also being introduced to infer land use from mobile
phone activity records and from zoning regulations (Toole et al.,
2012). Spatial network analysis has been applied to the same set
of smart-card data used in this paper to trace the urban transfor-
mation of decentralization in Singapore (Zhong et al., 2014).

In light of these potential uses of new data sources and analysis
methods, this paper proposes a two-step integrated spatial data
mining method aiming at inferring building functions using
smart-card and survey data. A probabilistic model based on a
Bayesian classifier and its related spatial statistics is used (1) to
integrate considerably more attributes compared to when simply
using spatiotemporal information and (2) to infer additional types
of activity places instead of detecting only residential and work-
places, which has occurred in most case studies to date. Bayesian
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models have been chosen because they are the most fundamental
and stable for data mining and information retrieval (Mosegaard &
Tarantola, 2002). This type of probability analysis is a mature tech-
nique in data-mining applications (Jensen, 2009) and exhibits good
performance in other analogous applications that process events
with multiple variables and known priori probabilities such as
what we have in our own case. For instance, land use classification
using radar terrain images (Decatur, 1989) is a typical example in
image processing. Bayesian belief networks are used to integrate
multiple data layers to estimate potential compatibilities and
conflicts between development and landscape conservation as a
decision-making tool (Mccloskey, Lilieholm, & Cronan, 2011).
Integrating Bayesian belief networks with other modeling
approaches for simulating future population and land-use change
also provides good examples for prediction (Kocabas &
Dragicevic, 2012). In sum, the characteristics of the Bayesian model
make it a powerful tool for addressing sequential events in cities
for events with complex network relations. In our research, we
apply the Bayesian model to build relations between the mobility
patterns of individuals’ trips and their daily activities so that we
might infer building functions specifically from the survey data
and smart-card data for bus travel in Singapore, thus making this
a comparatively new and innovative application.

3. An outline of the methodology

In this section, we first define key concepts in the context of this
paper. Next, based on these definitions, we introduce the frame-
work of the proposed method. Finally, a probabilistic model, which
is the core part of the method, is presented.

3.1. Basic concepts

Land use, building function, daily activity, and mobility pattern
are four basic concepts used throughout this work. Briefly stated,
land use is the planned or naturally emerging usage that
constrains the functions of buildings located on the land, which
is usually enclosed by a plot. However, these constraints are com-
promised by the actual needs of people. Consequently, the real
building function is reflected by actual usage, which reflects daily
activities performed in the building. Information about the activi-
ties that motivated trips to a location can then be deduced from the
mobility patterns of the travel behavior of people. These four con-
cepts are generally used with ambiguous meaning; therefore, we
must redefine them in the context of this paper, as follows.
Fig. 1. An example of land use, build
Land use is the human use of land. It has been defined as ‘‘the
human use of land involving the management and modification of
the natural environment or wilderness into built environment such
as fields, pastures, and settlements’’ (Watson et al., 2000). It
informs the original planned usage and restricts the practical usage
of the land.

Building function refers to the actual use of a building. In con-
trast to any preplanned zoning, this is how a building is used in
reality. Building function refers to information at a smaller spatial
scale than land use per se and is thus not fully compliant with land
use. For instance, a grocery store may be located in a residential
use area, thus distorting the real usage to one of mixed use, not
simply residential. This paper takes a building as a basic unit that
describes such a function. The function is determined by what type
of daily activities actually occurs inside the building.

Daily activity refers to the routine and institutional activities
that are followed usually over the 24 h day (Rodrigue, Comtois, &
Slack, 2013), such as working, shopping, and eating, which are
common social activities associated with any individual in the pop-
ulation, apart perhaps from the very young, very old and infirmed.
This type of activity, which occurs regularly, is reported in our sur-
vey data and manifests as predictable patterns. Travel purpose and
daily activity are used interchangeably in this paper.

Relations between the above three concepts are illustrated in
Fig. 1. The figure shows that daily activities and building functions
remain as question marks because this is the information that we
are generating from movement patterns in this research.

Mobility pattern refers to travel behaviors, such as starting
time and travel frequency, and past research has shown that an
individual usually has very stable mobility patterns that can be
analyzed and used as travel behavior to make predictions (Agard
et al., 2006; Bagchi & White, 2005; Liang et al., 2009; Park et al.,
2008). We use such mobility patterns to distinguish trips for differ-
ent activities.
3.2. The framework

We will introduce a scenario to enhance the explanation of the
above four concepts before moving on to the framework of our
method. As shown in Fig. 2, people travel for specific purposes with
respect to their daily activities. They arrive at one bus stop and
subsequently travel to their final activity places, which are likely
to be in surrounding functional buildings or public spaces. Two
research questions remain for us to answer in this scenario: How
do we deduce information about the daily activities that motivated
ing function, and daily activity.



C. Zhong et al. / Computers, Environment and Urban Systems 48 (2014) 124–137 127
the trip from the mobility patterns of people? How do we infer the
building functions that meet daily activity requirements consider-
ing the spatial relation between trip, stops, and buildings? To
answer these questions, we establish a framework based on a
probabilistic model that links travel, daily activities, and building
functions.

This proposed framework is broken down into two steps, which
are coordinated with the two research questions, as implied in
Fig. 3. After preliminary data processing, we first deduce information
about the daily activities that motivated the trips using mobility pat-
terns. This is performed using a Bayesian classifier. The result of this
first step is a probability distribution of daily activities linked to each
bus stop. Next, we make use of the spatial relations between bus
stops and buildings to find the possible final destinations of trips,
i.e., where people will perform their daily activities. These daily
activities are reflected, of course, in the building functions.

3.3. Preliminary data processing

Specific input data, in our case, are introduced here for a better
explanation of our method. Four types of input data are used:
survey data, which is used for the statistical analysis of mobility
patterns; smart-card data, which provides information that reflects
peoples’ daily activity; geo-referenced bus stop location points;
and geo-referenced building footprints.
Fig. 2. A schematic scenario of people traveling fr

Fig. 3. Overview of the two-step framework for inferr
Preliminary data processing of these data sets is conducted.
Firstly, a statistical analysis is applied to the survey data to find
mobility patterns, which are subsequently used as our prior knowl-
edge of peoples’ travel behaviors. Secondly, smart-card data is pro-
cessed. The original records provide information regarding trip ID,
passenger ID, boarding bus stop ID, alighting bus stop ID, trip
transfer time, starting time, traveling time, fare, and distance. We
estimate the staying time by calculating the time between two
trips, which is based on the tap in/tap out from a selected area
for the same passenger ID. The frequency is a statistic of how many
times a passenger ID appears on different dates associated with
going to the same area. The newly generated record consists of
six parameters: passenger ID, passenger age, arrival time, staying
time, frequency, and ID of the arrival stop. The statistical results as
well as the processed data structures using real sample data are
show in Sections 4.2 and 4.3. Finally, the bus stops and building
footprints are then stored in the Shapefile format, which are
imported into ArcGIS and manipulated by ArcGIS functions such
as redefining projections and calculating distances.

3.4. A probabilistic model for trip classification

The objective of this step is to deduce the most likely travel
purposes for daily activities. By comparing possible data mining
techniques, we found that using prior knowledge from survey data
om bus stops to buildings for daily activities.

ing building functions using transportation data.
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to classify new records of smart-card data is a typical application of
the Bayesian classifier.

A Naive Bayes classifier is a probabilistic classifier based on
Bayes’ theorem. Bayes’ theorem expresses the relation between
conditional probabilities when some events are contingent on
other events (Carlin & Louis, 1997). Given sample input data, the
Bayesian classifier assigns the most likely class label to a sample
by evaluating its feature vector and its prior probability. The Naive
Bayes model has been shown to be effective in many practical
applications (Rish, 2001). Because the events of trips and their fea-
ture attributes satisfy conditioned independence, inferring infor-
mation about daily activities can be formulated as an application
of the Bayesian classifier. In this section, we will define the param-
eters that we have already defined in the Bayesian classifier.

Definition 1. Trip T: a trip is a generated record. A record is
generated by a set of time-ordered points recording how one
passenger arrives and leaves one place to engage in a certain urban
activity. Each trip reveals mobility patterns, which are expressed
by multiple attributes. For instance, in our case, trip t is denoted as
t = [aa, at, ad, af], where the attribute aa stands for passenger age, at

stands for arrival time, ad stands for duration, and af stands for
frequency. These attributes are mobility patterns that reveal
people’s travel purposes and that are linked to a certain activity
created by a passenger after making the trip.

Definition 2. Activity class C: this is the set of possible urban
activities that motivate a trip. It is also the information we want to
deduce. In our case study, six activity classes are used, i.e.,
C = {cworking, cgo_home, cshopping, cstudying, ceating, csocial_related}.

For each activity candidate c, there is a prior probability P(c). For
each attribution ai(ai e {aa, at, ad, af}) of a trip instance t = [aa, at, ad, -
af] belonging to activity class c(c e C), there is a prior probability
P(aa|c). This prior probability is our a priori knowledge that was
learned from a statistical analysis of the survey data. As shown in
Eq. (1) below, given a new trip instance t = [aa, at, ad, af], the question
can be formulated as follows: What is the most likely activity c that
motivates the travel based on the prior known probability? The
answer is found by calculating the maximum P((aa, at, ad, af)|c).
Therefore, the likelihood of trip t = [aa, at, ad, af] belonging to
c(c e C) is

Pðcjðaa; at ; ad; af ÞÞ ¼ Pðaa; at; ad; af ; cÞ=Pðaa; at ; ad; af Þ
¼ PðcÞPðaajcÞPðatjcÞPðadjcÞPðaf

��cÞ=Pðaa; at ; ad; af Þ
ð1Þ

t = [aa, at, ad, af] belongs to the activity class CMAP, which has a max-
imum likelihood given by (2)

CMAP ¼ max
cj2C

PðcjÞ
Y

i

PðaijcjÞ ð2Þ

The result of this step is a probability distribution of the travel
purpose of each trip. Summing all trips by arrival stop, this result
reflects the required functions provided by the buildings surround-
ing a stop. An example of the intermediate result of this first step is
shown in Fig. 6. Trips concluding at 136 bus stops in one area are
classified into six groups. The x-axis shows the bus stop ID, while
the y-axis shows the probability distribution of the travel purposes
for daily activities for each bus stop using six colors.

3.5. A spatial statistical model for extracting building functions

We consider that building functions can be derived from prob-
ability distributions of daily activities linked to arrival bus stops. To
do this, we have to determine the source stops, where humans flow
into surrounding buildings, and because these vary in quantity, dif-
ferent weights for each surrounding stop to one building should be
used. Here, we generate a probability landscape of activities. Such a
landscape portrays the probability of a certain activity happening
at each area according to some sample points. The sample points
in our case are the stops surrounding the area in question, where
we assume that people choose the stop nearest to their destina-
tions. We thus apply interpolation to the nearest neighbors of each
stop. There are then two steps in generating the landscape: calcu-
lating weights that neighboring stops contribute to one area and
calculating the final probabilities of each activity in one area,
which is a theoretical problem.

To establish spatial relations between buildings and stops is to
find the most likely buildings where people are heading to from
their alighting stops. Logically, people will disembark at the stop
nearest to their destination. People will sometimes go to bus stops
further away for better bus service, but the stop will be relatively
close to the destination. That is to say, distance is the most impor-
tant factor influencing peoples’ decisions. We demonstrate the sta-
tistical results of the survey data, where Fig. 4 (left) is the
frequency distribution of the number of people and their walking
time to the bus stops. This shows that most people manage to walk
to their destinations from the bus stops within 10 min and that the
number of people decreases as the distance increases. Fig. 4 (right)
is a fitted curve that follows an exponential function of walking
time and the probability of people choosing this bus stop to disem-
bark. We conclude that the further the distance, the less likely that
people are coming from this stop, which perfectly matches the
inverse distance weight (IDW) function.

Although there are many variants of interpolation, as a tentative
approach to the problem, we use inverse distance weighting (IDW),
where each measured point has a local influence that diminishes
with distance. The method weights the points closer to a particular
location more highly than those further away, and the weights are
defined generically for each point as

Wiðx; yÞ ¼ 1=dijðx; yÞk ð3Þ

where (x, y) is the geographical coordinates of a location point i,
Wi(x, y) is the weight of point i contributing to its neighbor point,
j and dij(x, y) is the distance from point i to point j. Note that the
weights are normalized about a particular point to sum to 1, that
is,
P

"x,yWi(x, y) = 1, and k is a parameter set here as 1, which gives
the coefficient of the population distribution and walking distance
shown in Fig. 4. The weight is later used in the total probability the-
orem in definition 3, which follows.

Definition 3. Stop-activity-subspace S: this definition views a stop
as a source of human flow. It distributes the flows traveling to
different activities. We consider a stop as an experimental sample
space to identify building functions, and we assume that these
experimental sample spaces are independent of each other.
Therefore, let {s1, s2, . . ., sn} be a subset of the sample space s of
an experiment. For s e S, P(s) > 0, where P(s) is the probability of a
human flow from a bus stop s. For an activity c in the space s,
P(c|s) > 0. P(c|s) is the probability of an activity c arriving at stop s.
Therefore, the probability of one building having a type of activity c
conducted inside is

PðcÞ ¼
Xn

k¼1

PðsÞPðckjsÞ ð4Þ

The result of this step is the final probability distribution of the
building functions. The process of calculating IDW and the results
of the probability distribution of building functions are illustrated
in Figs. 8–11.



Fig. 4. Probability distribution of walking time from bus stop to destination.

Fig. 5. Two case study areas: Jurong East and Rochor.
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4. Experiments and analysis

4.1. Data description

Two types of data are used as inputs. Survey data based on a
Household Interview Travel Survey (HITS) is gathered by the Singa-
pore Land Transport Authority (LTA) every four to five years to give
transport planners and policy makers insights into residential tra-
vel behavior. Approximately 1% of households in Singapore are sur-
veyed, with household members answering detailed questions
about their trips. The HITS results provide very detailed informa-
tion, including age, occupation, travel purpose, travel destination,
walking time, waiting time, travelling time, and travel frequency
for an activity. This paper uses the 2008 HITS results, which con-
tain 88,601 records, in which 37,228 records are associated with
the public transportation mode (Cheong & Toh, 2010). The smart-
card data used in this study were collected by a fare collection sys-
tem and kindly provided by the Singapore LTA (Land Transport
Authority). This present study was conducted based on smart-card
records from an entire week in April 2011.
4.2. Statistical analysis of survey data

Two essential elements are determined based on the statistical
results. First, what are the mobility patterns ([aa, at, ad, af]) that can
be used to classify trips? Second, what are the predictable daily
activities (Activity C) as well as their corresponding building func-
tions? The answers to these two questions are developed in the fol-
lowing sections.



Fig. 6. Trip classification. The input data of trips (top left), statistical prior probability (top right), calculated posterior probability (bottom left), an intermediate evaluation of
the probability distribution f. Daily activities at 136 bus stops (bottom, x – stop index, y – probability of activities).
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4.2.1. Statistical results of mobility patterns
The statistical results are used as mobility patterns to classify

different trips, where a set of mobility patterns ([aa, at, ad, af]) is
found using a statistical analysis of the surveyed data, HITS, to
infer travel purposes. In Table 1, we compare six mobility pat-
terns: alighting time, age distribution, activity frequency, time
use of activity, walking time from stops to buildings and activity
locations of daily activities. To match attributes of the surveyed
data with those of the smart-card data, we aggregate the sur-
veyed data into discrete categories. The categories of arrival time,
staying time and travel frequency are the same as those shown in
Table 1. Because smart-card data only represents three age
groups (Children and student card (4–20), adult card (20–50)
and senior citizen’s card (50 up)), which are fewer than what is
represented by the survey data, we aggregate the survey data into
these three categories of age groups. The priori probability distri-
bution used as input into the Bayesian classifier is generated from
the aggregated data.
4.2.2. Sectors of daily activities
Further explanations are given here regarding the different sec-

tors of daily activities (C) and of building functions, which are used
in this paper for demonstrating our method. We demonstrate the
method using a classification of the most widely used daily activ-
ities and building functions in the urban analysis.

Originally, our classification was derived from survey data in
Singapore. As a pilot study, we selected the experimental activities
from the given list of travel purposes according to three criteria.
The first criterion was that they should be the options (travel pur-
poses) that account for a large proportion of the survey results.
Second, the travel purposes should show distinct mobility patterns
and thus support the validity of the classification. Third, the
selected activities as a whole should cover all representative daily
activities in urban analysis, including necessary activities, such as
going home and working; optional activities, such as dining in a
restaurant; and social activities, such as social visiting, which are
all relevant to the urban designer’s point of view (Gehl, 1987).



Fig. 7. Calculated weight of each bus stop contributing to the final probability of cells from the IDW interpolation tool in ArcGIS.

Fig. 8. The results of the interpolated probability landscape of each activity class in the Jurong East area.
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Based on these three criteria, six travel purposes are selected:
shopping, working, staying at home, studying, eating, and social
visiting. It should be noted that social visiting combines a variety
of activities, including entertainment, accompanying someone as
a colleague or friend, and religious matters. These activities are
performed relatively infrequently, take a comparatively shorter
time, occur irregularly, and present similar mobility patterns. The
transfer mode occurs when people are heading to the next travel
service. This is excluded from our analysis and filtered out during
the preliminary data processing. These original travel purposes



Fig. 9. The results of the interpolated probability landscape of each activity class in the Rochor area.

Fig. 10. The results for Jurong East: inferred building functions (top left) compared to the Master Plan (top right) and to Google Street View (bottom right). Note that land use
types are aggregated into five categories for a better comparison. Shopping areas are linked to wider categories of land use for commercial and business places in the Master
Plan. The same rules apply to Fig. 11.
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Fig. 11. The results for Rochor: inferred building functions (top left) compared to the master plan (top right) and to Google Street View (bottom right). Probability distribution
of the six daily activities at the building level in the Rochor area (bottom left).
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(right) have been renamed according to their corresponding daily
activities (left), as shown in Table 2. The selected activities take
place in functional areas, which are shown in Table 1 (6), and cover
the main functions of urban space.
4.3. An experiment: The case study

We illustrate our method step by step with a case study from
Jurong East in Singapore, the location of which is shown in Fig. 5.
Jurong East is part of Jurong, the largest town in Singapore, which
has the second largest resident population and which contains
multiple land uses such as education, commercial, residential,
and industrial. We chose an area approximately 1500 * 2000 m,
totaling approximately 3.214 million square meters, and our statis-
tical data covers seven days’ worth of trips from 136 bus stops
located inside or on the border of the selected area. After the pre-
liminary data processing, we extracted an average of 128,000 valid
trip records per day. The results were mapped to 2737 buildings,
and where we used the directly footprint, some buildings were
decomposed into several smaller ones.

To evaluate the feasibility of our method, another case study
was conducted in Rochor, Singapore (also shown in Fig. 5). Rochor
is located in the central region of Singapore and contains many
commercial buildings, a few residential houses, and other func-
tional services. We chose an area approximately 5000 * 3000 m,
totaling approximately 17.857 million square meters, and the sta-
tistical data cover trips from 188 bus stops located inside or on the
border of the selected area. In this case, after the preliminary data
processing, we obtained an average of 189,000 valid trip records
per day, and the results were mapped to 3909 buildings.

To emphasize the spatial resolution, in the experiment, the
number of travel records is much denser than the number of build-
ings. On average, each building will contain people from approxi-
mately 10 bus stops, and each bus stop has an average 5000
travel records per day.
4.3.1. Trip classification
The original smart-card data provide information about trip ID,

passenger ID, trip transfer time, starting time, travel time, fare, and
distance. We estimate the staying time by calculating the interval
time between two trips, generated in/out of a selected area, with
the same passenger ID. Frequency is a count of the time that the
same passenger ID appears in the selected data sets on different
dates. Fig. 6, which includes Table A (top left), shows examples
of the generated data structure, which is the result of the prelimin-
ary data processing.

As shown in the framework, after the preliminary data process-
ing, we perform a trip classification using the Bayesian classifier
with input from the analyzed results. Fig. 6 shows example tables,
including the generated trip records shown in Table A (top left), the
prior probabilities shown in Table B (top right) and Table C (mid-
dle), which are the results of the classification showing the inferred
probability distributions of daily activities linked to each bus stop.

In the first step, the value of the prior probability P(ai|c) is read
from the prior probability table. To provide a clearer interpretation,
we marked the attribute ‘‘activity frequency’’ as an example.



Table 1
Six patterns of travel behavior found in the survey data and used to build clustering prototypes for urban activities.

Pattern Statistical results Explanation

Alighting time When do people start their activities?
Two hours is used as the basic unit in this analysis. This shows that there are different peak
hours for different travel purposes: going to work and to school mainly occur in the morning;
going home occurs in the evening; eating occurs at lunch and dinner times; and social visiting
and shopping are evenly distributed throughout the day

Age distribution Who is the major group traveling for a certain purpose?
Age is used to divide people into different groups in this analysis. Going to school occurs
mainly among teenagers, and working covers all age groups but is concentrated for young
people. The other activities have comparatively similar distributions

Activity frequency How many times did people engage in the same activity in the past seven days?
The frequency of activities shows how often people made the same trip during the past seven
days. As shown in the left figure, going to work, going home and going to school occur
comparatively regularly, whereas the others occur occasionally

Staying time How long do people spend on certain activities?
Staying time is estimated as the period between two trips used to perform the activities. There
is no direct information in the survey; therefore, we summarized this from the literature,
including statistical data on working hours obtained from official websites (Government of
Singapore, 2012) and other survey data about time use (U.S.Statistics, 2011) as well as from
some ad hoc interview data

Walking distance If taking the bus, how far is the bus stop from the destination by walking?
The walking distance shows how long it takes to travel from the bus stop to the destination by
walking. It is used for defining the spatial-correlation coefficients used in Section 3.5, where
the distribution of activities types is drawn

Location Where do people perform the activities?
The activity place shows what type of place people travel to for certain activities. It is used to
define the correlations between travel purposes, activities, and building functions
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A different frequency refers to a different value of a prior probabil-
ity. The prior probability is read from Table B. As such, there are
tables of prior probability distributions for the other attributes.
In the second step, after checking all of the individual attributes’
prior probabilities, we use Eq. (1) in Section 3.4 to calculate the
probability of activities, thus finding the most likely activity that
motivated this trip. Table C is the posterior probability distribution
of the six daily activities linked to one stop, e.g., bus stop ‘‘284**’’,
which has the highest probability of education, abbreviated as ‘‘e’’,
in the table. This means that the majority of people disembarking
at this bus stop are traveling for education, which implies that
there might be an educational institute nearby. The chart figure
(bottom) in Table C shows the probability distributions of the six
activities at 136 bus stops in Jurong East. The probability distribu-
tions of the six daily activities are labeled in six different colors.
The x-axis shows the bus stop ID, while the y-axis shows the pro-
portion of activities at each stop. We have highlighted stop ‘‘284**’’
from the chart figure. The color purple, which we use to represent
studying, accounts for the largest proportion. An intermediate
evaluation of the results is performed to check the general effec-
tiveness of our estimation. We checked the buildings surrounding
stop ‘‘284**’’ on Google Maps and determined that the closest
building is a school, which explains why the main activity of going
to stop ‘‘284**’’ is studying.

4.3.2. Spatial statistics of trips from bus stops to destinations
We used the IDW spatial analysis tool in ArcGIS to interpolate

the probability distributions of certain functions that correspond
to the daily activities performed in the Jurong East area (shown
in Fig. 7). We set the number of neighborhood stops to a minimum
of 1, assuming that everywhere can be reached, and a maximum of
10, assuming that people may come from 10 nearby stops. We
noticed that 10 stops is more than what is observed in real situa-
tions, but our experiments show that changing the maximum



Table 2
Statistical data of daily travel purposes from HITS (only counting included public
transport modes).

Urban activity (travel purpose) Number of trip
records

Social visiting (return from another home) 27
Transfer mode 31
Social visiting (entertainment) 68
Social visiting (sports/exercise) 111
Social visiting (religion-related matters) 166
Social visiting (medical/dental(self)) 187
Social visiting (recreation) 216
Social visiting (to accompany someone) 219
Social visiting (personal errand/task(pay bill/

banking))
301

Social visiting (to drop-off/pick-up someone) 339
Social visiting (work-related business) 422
Eating (meal/eating break) 438
Social visiting(social visit/gathering) 1043
Shopping 1385
Studying (education) 4383
Working (go to work) 10,151
Staying at home(return home) 17,727

Table 3
Comparing our predicted results with a sample of ground truth data.

Site Size
(approximate)

Number
of
counted
buildings

Number of
buildings
mapped with
an incorrect
function

Percentage
of
correctness
(%)

500 * 500 m 140 24 82.85

1200 * 1200 m 114 15 86.84
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number only slightly changes the interpolated results, and the
overall accuracy remains almost the same.

The results of IDW are presented in Figs. 8 and 9 and show the
probability distribution of certain functions in Jurong East. For
example, the top left image shows the areas mapped in red having
a higher probability of being a working place than those in blue.
Compared with the Master Plan, the overall distributions appear
correct: working places are mostly located in the southern area,
commercial places are located in the southern area, and residential
places are located in the southern and middle areas; in contrast,
comparatively few studying places exist. In the next step, we per-
form a spatial union of the overall distributions of the six activities
and building footprints. An example of this mapping to building
footprints is shown in Fig. 11 (bottom left).

4.4. Analysis of results and discussion

The final results for the Jurong East area are shown in Fig. 10 on
the left side; the 2008 Master Plan1 is shown at the top right side
and shows the planned land use of this area. The 2320 building foot-
prints are marked with different colors representing the most likely
functions of the buildings. Some buildings are randomly selected for
comparison using Google Street View. We show three of them in
Fig. 10 (right bottom). Similarly, the results for the Rochor area are
shown in Fig. 11 using the same layout. In addition, the probability
distributions of each function, which are the intermediate results
of our method, are shown in Fig. 11 (left bottom).

In the following section, we discuss in detail the accuracy of our
results, causes of any errors and corresponding solutions for future
work. We verified our method by comparing our results to the
Master Plan, Google Street View and to survey data directly col-
lected, which we contend is a form of ground trothing. We cata-
logue these results below under several points, and this provides
the reader with a summary of the relative success of the method
and its predictive analysis. These points are as follows:

1. We have compared our results inferred from data from 2011 to
the Master Plan 2008 to estimate their compatibility and to
obtain a sense of the overall distribution of the inferred func-
tions. As defined in Section 3.1, the Master Plan gives the global
1 The Master Plan in Singapore is the statutory land use plan that guides
Singapore’s development in the medium term over the next 10 to 15 years. http:/
www.ura.gov.sg/uol/master-plan.aspx?p1=View-Master-Plan accessed in 2014.
/

constraints on land use and building functions. In Fig. 10 (right),
we map the Master Plans with an almost similar color code to
facilitate an easy and clear comparison. We say ‘almost similar’
because we aggregated the land use categories given by the
Master Plan. For instance, business use (pink) could be restau-
rants as eating places (purple) and small shops as shopping
places (red). The rest, as we show, includes residential buildings
(orange), which are located on top of the residential area
(orange) and mixed use area (light yellow); working places (yel-
low green), which are located on top of industrial and office
areas (yellow green); and schools (bright green), which are
located on top of educational land use areas (bright green). Note
that the land use plan and the inferred building functions are
not at the same spatial scale, validating our method only at
the block level. The accuracy was previously demonstrated in
Figs. 8 and 9.

2. Selected landmarks are compared to information from Google
Street View at the building scale. As shown in Fig. 10 (bottom
right), we selected various landmarks, including a school sur-
rounded by residential houses, a shopping mall surrounded by
industrial and residential areas and a typical industrial building.
We show a similar picture in Fig. 11 (bottom right). All of these
were matched with the information from Google Street View.
This demonstrates that our method can effectively infer func-
tions at the building scale with a high percentage of correct
cases. It can detect more detailed building use than that given
by the Master Plan, with the results distinguishing industry
and office buildings from shopping malls.

3. We have compared our experimental results with ground truth
data. The result of our method is a probability distribution of
each function of a building, and we map each building with
the function that has the maximum value. The results indicate
the dominant use of the building instead of the only use of
the building. We visited parts of the site to investigate whether
a building has the dominant function that we calculated. The
determination of the function relies on facility types based on
the statistical results in Table 1. For instance, working space
mainly refers to office buildings and industrial buildings, and
social visiting can occur in buildings that provide mainly non-
commercial services, such as libraries, community centers,
and churches. The results are shown in Table 3.

However, there were errors, although not substantial, in our
results concerning building functions, and this is to be expected
because it is impossible to have complete accuracy using this sta-
tistical approach, although it is heavily driven by observed data.
One reason for these errors is that the data sets were not synchro-
nized. The survey data and the Master Plan were made in 2008,
whereas the smart-card data were collected in 2011, and the

http://www.ura.gov.sg/uol/master-plan.aspx?p1=View-Master-Plan
http://www.ura.gov.sg/uol/master-plan.aspx?p1=View-Master-Plan


Table 4
A sample of travel survey data with selected relevant attributes shown.

ID Age Occupation Origin
postcode

Destination
postcode

Start
time

Arrival
time

Activity
place

Trip
purpose

Travel
mode

Walking
time

Frequency

1 40 Manager 5⁄⁄⁄⁄6 5⁄⁄⁄⁄3 6:25 9:15 Clinic Work Public bus 10 1
2 25 Retired 5⁄⁄⁄⁄3 5⁄⁄⁄⁄6 9:30 12:15 Home Go home Public bus 10 4
3 69 Retired 5⁄⁄⁄⁄6 5⁄⁄⁄⁄9 12:30 14:00 Shops Shopping Walk 15 5
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Google Street View data are from recent internet updates (within
the last year, 2013). Although this is a small difference in time, this
may still cause some errors. In addition to the unsynchronized data
sets, we should note other causes of the errors, and four typical
errors are marked in Fig. 10 with green circles. The errors, their
causes, and possible solutions will now be discussed.

1. Border effects. Stops have more influence on buildings located
in nearby blocks than on buildings located on the other side of
the street, as shown by the green circles in Fig. 10. However,
this difference cannot be easily quantified. In the micro view,
to solve this problem, streets that are geographic borders of dis-
tricts should be considered as barriers with respect to the
inverse distance weight functions used in Section 3.5. In the
macro view, the accessibility of the global street network
should be measured. In fact, how street types influence urban
activities is another difficult topic. In this paper, to focus on
the data mining method, we have neglected this.

2. Scale issues. Because building functions are calculated using
the types of trips ending at surrounding bus stops, the results
are closely related to the density of the bus stops. For areas with
a dense bus stop distribution, the results will be more stable.
Conversely, the results will be heavily influenced by small sam-
ple spaces, as shown in Error 2. To some degree, we can say that
this method exhibits a better performance at the block scale (as
shown in Fig. 8) than at the building scale (as shown in Fig. 10).
A possible solution is that of fusing multi-source data, such as
GPS traces on taxis, and this may increase the resolution of
the data.

3. Mobility patterns inefficiency. Peoples’ travel purposes are
motivated by daily activities and result in different mobility
patterns. The mobility patterns analyzed from the survey data
in this paper are insufficient to distinguish many activity clas-
ses. For instance, social visiting and eating, as shown in Fig. 8,
have very similar probability distributions with respect to
mobility. Reflecting on the reality of the situation, problems
exist when we attempt to further distinguish service buildings,
such as community centers, libraries, and churches, which we
note as Error 3. From a technical point of view, more features
Fig. 12. Travel mode share in 2008.
are needed to achieve more precise identification. This can be
enhanced by adding additional features derived from integrated
knowledge about the city as a social system.

4. Influence from other travel modes. The functions of buildings
were inferred from travel via the public transportation system,
meaning that travel by private car, bike or walking were
excluded. For some cities, such as those in North America, pri-
vate cars are the most popular choice of travel mode for the
majority of the population. Applying our method using only
smart-card data will not achieve satisfactory results for these
populations. However, in our case studies in Singapore, where
the public transportation system is the major travel mode,
smart-card data are rich enough to represent the functions of
the main urban spaces. We consider that these methods have
promise for dense and large urban areas, such as London and
Tokyo, where a large proportion of travelers use buses and
trains.

5. Conclusions

In this paper, we have introduced a method of combining sur-
vey and smart-card data to infer information about social activities
and to generate insights into urban building functions. Specifically,
we proposed a probabilistic model to infer information about daily
activities from individuals’ travel and infer building functions from
corresponding daily activities. The model can also be used as an
alternative way of driving data acquisition and analysis of func-
tional urban spaces. Moreover, this is a comparative approach that
provides not only a quantitative estimation method but also
insights into how people use urban space in reality. Because urban
movement data are becoming increasingly more accessible from
smart cards and related GPS capture, applying our method to his-
torical data may help us obtain a better understanding of the
dynamics of urban spaces. The information we infer in this way
is thus extremely useful to planners in obtaining efficient and
updated information about urban functionality, which enables
them to better manage their short-term and long-term plans. Note
that the input parameters of our probabilistic model generated
from the smart-card data are simple and only require boarding
and disembarking times and locations. This information could also
be obtained from other sources of urban mobility data such as taxi
data. Therefore, we believe that our method has a wider applicabil-
ity and can be applied to other types of data with equal or higher
spatiotemporal information quality than that collected using smart
cards.

There is much work to do and many problems to study to coun-
ter the limitations of our approach. In addition to the issues dis-
cussed previously, namely, border effects, scale issues, pattern
insufficiency and transportation data insufficiency, there are addi-
tional questions that we have not discussed here but that must be
addressed to make further progress. First, the effect of long-dis-
tance travel using the metro system should be considered in the
future. This is excluded from our paper because the density of
metro stations is much lower than that of bus stops, and this would
cause serious scale problems if we were to carry out the same anal-
ysis using these data. Second, we conducted our experiment in Sin-
gapore, which has a strong Master Plan and where land use is not
highly mixed. Whether our method can be adapted for substan-
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tially more complex and mixed land use areas where people live in
different areas and use transit systems in very heterogeneous ways
is a topic we need to explore in the future. Third, the two essential
parts of our method, namely, the Bayesian classifier and the IDW
function, are used as a first attempt at exploring the possibility
of using these types of big data to determine the dynamics of spa-
tial functionality. We do not disaggregate this analysis by time of
day, only by spatial area, and there are interesting experiments still
to be carried out in these directions. Last but not least, other algo-
rithms can be used to try and improve the accuracy of the results,
and in future work, these will be important issues to explore.

In the future, we will further investigate and apply our method
to cities in different countries. We will also advance our method by
integrating multi-disciplinary knowledge, addressing the scale
issues by introducing crowd-sourced data and by avoiding the
border effects using a network analysis. In general, we consider
integrated techniques and combined information as a way to make
progress.
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