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Exploring the evolution of London’s street network in the information space: A dual approach
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We study the growth of London’s street network in its dual representation, as the city has evolved over the
past 224 years. The dual representation of a planar graph is a content-based network, where each node is a
set of edges of the planar graph and represents a transportation unit in the so-called information space, i.e.,
the space where information is handled in order to navigate through the city. First, we discuss a novel hybrid
technique to extract dual graphs from planar graphs, called the hierarchical intersection continuity negotiation
principle. Then we show that the growth of the network can be analytically described by logistic laws and
that the topological properties of the network are governed by robust log-normal distributions characterizing
the network’s connectivity and small-world properties that are consistent over time. Moreover, we find that the
double-Pareto-like distributions for the connectivity emerge for major roads and can be modeled via a stochastic
content-based network model using simple space-filling principles.
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I. INTRODUCTION

Understanding constitutional principles and structural mor-
phology of complex transportation systems is an outstanding
problem in statistical physics and complex systems. Energy
flows in different systems in different articulate ways. Exam-
ples are the circulation of blood in vein vessels or the flow
of macromolecules transported between cellular components,
river networks, and fracture patterns [1–3]. Beside the apparent
diversity of the aforementioned phenomena, striking regular-
ities emerge between them. Depending on the dimensionality
of the space where they are embedded, we can observe similar
patterns and scaling laws [4,5] (Fig. 1).

Here we consider urban street networks in a similar way.
The recognition of network complexity as a key theme
in urban studies can be traced back to Euler’s first graph
theory approach [7]. Similar conceptualizations dominated the
scientific discourse during the twentieth century, epitomized
by Zipf’s and Gibrat’s laws. While the application of these laws
to city size and urban growth still remains an open problem
[8,9], during recent decades fractal theory and diffusion
processes found fertile applications to morphological studies
of urban systems [10].

The most direct way to represent street networks is via
planar graphs, which are defined as a set of vertices and
edges {V,E} embedded in a two-dimensional surface, with
the condition that the links do not cross one other, known
as the planarity criteria. The description of a street network
via its planar graph representation is known as the primal
graph. However, it has been shown that such a representation
is not sufficient to describe the complexity of street networks.
Even if primal graphs have a rich geometrical texture, their
topological properties are very similar to the ones of random
geometric graphs and do not tell us much about the structure
and complexity of urban systems.

It is now well accepted that the complexity of urban trans-
port networks resides in the so-called information space, or the
dual representation of the network [11]. Such a representation
emerges from the evidence that the primal graph units, i.e., the
street segments, are not the constitutive transportation units

of urban networks. Generally, transportation entities in street
networks are constituted not by individual street segments but
by assemblages of such segments, i.e., the roads. In the field
of complex systems, the dual representation of a planar graph
is a network where the nodes or vertices are the transportation
units, i.e., a collection of street segments belonging to the
same road. Then in the dual graph two vertices are linked if
the corresponding transportation units intersect [12,13].

As we have already noted, the dual representation of a
street network can be interpreted as the information space
of that network [11]. This is because the dual representation
reflects a system of coding of symbolic information which
helps individuals to navigate through urban space. Thus a
street network can be described by the interplay between
two layers, one embedded in the Euclidean space (the primal
representation) and the other one embedded in a symbolic
space (the dual representation). This is a fertile perspective
on spatial networks, since it has been shown that such an
interplay can be described as an optimization process that tends
to minimize the walker effort both in the Euclidean and in the
information space [14]. Moreover, striking regularities have
been found in the information space of street networks, such
as broad connectivity distributions and small-world properties
[11,14,15].

However, while the primal graph is a straightforward
representation, extracting the dual representation of a planar
graph is not a trivial problem. The key issue is to determine
which street segments belong to the same transportation unit.
Two main approaches to solve this problem have been pro-
posed, reflecting a distinction between physical and behavioral
considerations. There are many possible variants of these two
approaches, but here we illustrate the first by the intersection
continuity negotiation (ICN hereafter) [12], which is based
on the geometrical properties of the planar graph. The second
method is called the street name approach (SN hereafter) [16],
and it is based on the symbolic properties of the streets, derived
from historical naming conventions.

The ICN method, based on the principle that two spatially
aligned street segments are likely to belong to the same road,
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FIG. 1. (a) Crack pattern formation from drying a solution of corn
starch and distilled water [6]. (b) Street network pattern for part of
central London around the Thames, where the thick lines represent
mayor roads.

works very well on gridlike street networks, which typically
reflect direct top-down planning interventions. The ICN
method, however, is often misleading when applied to cities
exhibiting a more complex geometry, which have evolved as
a result of bottom-up actions, i.e., self-organizing cities. A
good example illustrating the problems of applying the ICN
approach to nonlinear geometrical entities is London’s orbital
motorway M25. In the dual representation, such beltways,
which are common in many large cities around the world,
should be represented by a single vertex, denoting one of
the largest hubs in the information space. However, the ICN
method would break the M25, with its circular shape, into
many different vertices, recognizing as a series of single roads
just the street segments that are most aligned. On the other
hand, the SN method is based on the simple principle that
two contiguous street segments that have the same street
name belong to the same road. The method is based on
the assumption that street naming systems encapsulate the
perceptions of how streets are identified and used and identified
as the main constituent blocks of the city. SN works very well
for large roads, but often, especially in large cities such as
London or Paris, the street name could change several times
along the same road and as a result the dual representation of
the network based on SN can be quite misleading. To overcome
the methodological problems of ICN and SN explained above,
we introduce a hybrid methodology for extracting the dual
graph by mixing the symbolic approach with the geometrical
one.

In this paper we present the results of the dual analysis
on a unique dataset consisting of nine map series that
record the evolution of Greater London’s street network
from 1786 to 2010. The dataset is shown in Fig. 2 and the
extraction procedures and its primary representation analysis
are described in Ref. [17]. Each road in the dataset is classified
according to a four-level hierarchy based on motorways, class
A and class B roads, and minor roads [18].

We find that the growth of the city in the information space
follows rules that are similar to the ones in the Euclidean
space; i.e., the growth of the network in terms of vertex
and edge dynamics can be analytically calculated via two
simple logistic laws. Moreover, we conclude that the scale-free
connectivity distribution described in other studies is an effect
of the ICN method and does not reflect the true nature of the

FIG. 2. (Color online) The street network of London from 1786
to 2010. Different colors correspond to different road classifications:
motorways, A (red, [gray]) and B (blue [gray]) roads, minor roads
(gray) (image from Ref. [17]).

information space [11,12,14]. In particular, we show that with
an appropriate definition of the dual graph the connectivity
distribution comes out to be a robust log-normal distribution
over more than two orders of magnitude. However, we find that
the small-world properties of the network is a stable attribute
of London’s street network throughout the past two centuries,
highlighting that the navigability of the city in the information
space is a robust property of the system.

Furthermore, we find that the connectivity for the dual
network formed just by major roads follows a double-Pareto
distribution. This property, which was already observed in a
study of large-scale national road networks in three different
countries [15], seems to be a peculiar feature of street networks
formed by high hierarchy roads as well. We show that such a
behavior can be reproduced by a space-filling model, where
the street segments are the results of a fragmentation process
of longer street segments, while longer roads can be composed
of street segments created at different times.

II. HIERARCHICAL INTERSECTION
CONTINUITY NEGOTIATION

Each street segment in our map series is classified according
to four hierarchical levels which broadly reflect capacity:
motorways, class A roads, class B roads, and minor roads
(see Fig. 2). As shown in Ref. [17], the major roads (the
motorways, class A and class B roads) and the minor roads
reflect two different aspects of the street network. The major
roads are conduits for the main inter- and intracity flows of
people and resources, while the minor roads serve to access
and develop specific plots of land for various types of urban
(primarily residential) uses.

In order to extract a reliable dual graph, we combine the
geometrical ICN approach with a symbolic approach that uses
the hierarchical tags of the street segments. We apply the
ICN principle [19], with a π/2 threshold (two street segments
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FIG. 3. Degree distribution measured for London’s 1990 dual
street network: (a) for the network extracted via HICN and (b) for the
network extracted via ICN.

forming an angle less than π/2 cannot belong to the same road;
see the conclusions for further discussion about this threshold)
first to motorways, then to A roads, and then to B roads. After
that, we apply the ICN principle to minor roads, with the rule
that two street segments with the minor road tag cannot belong
to the same transportation unit if they are on the opposite sides
of a major road.

Our method of extracting the dual graph, which we
call hierarchical intersection continuity negotiation (HICN
hereafter), is inspired by the study in Ref. [20]. Its advantage
is that it addresses known deficiencies of both the ICN and the
SN approaches. We found that the use of road hierarchy as a
symbolic layer is less restrictive than the street name–based
approach SN, as it is not affected by arbitrary street name
changes. Compared to the classical ICN, our approach avoids
the problems associated with long irregular roads as the
application of the road hierarchy automatically prevents the
merging of minor and major roads.

In order to understand to what extent different dual
approaches could affect topological results, we tested the two
methods to derive one of the main topological properties for a
complex network, the degree distribution. In Fig. 3, we show
the degree distribution measured for the dual representation of
the 1990 London street network on a log-log scale. The left
panel shows the results derived by the HICN methodology,
whereas in the right panel we show the same measure on
the dual graph extracted by the ICN principle, with π/2
angular threshold. The systematic errors of ICN, outlined in
the introduction, appear to generate a scale-free distribution,
while the plot obtained from the HICN does not conform to a
power law.

III. TIME EVOLUTION

Using the HICN method defined above, we extract nine
topological networks representing the evolution of the infor-
mation space associated with London’s street network over
224 years. In the top panels of Fig. 4, we show the growth of
the network as a function of time, with the number of vertices
N (t) plotted in the left panel and the number of links E(t) in
the right. Interestingly enough, we find that both functions can
be fitted by a logistic function with a striking level of precision
(adjR2 > 0.99 [21]):

f (t) = C

1 + e−r(t−t0)
, (1)

FIG. 4. Dual network analysis: (a) Number of vertices N (t) as a
function of time. (b) Number of links E(t) as a function of time. (c)
Number of links E(N ) as a function of the number of vertices. (d)
Average degree 〈k(N )〉 as a function of the number of vertices.

where r is the growth rate, C the carrying capacity, and t0
is the inflection point, that is, ∂2f/∂t2|t=t0 = 0. In Ref. [17]
we demonstrated that the very same observation holds for the
primary graph as well. This means that the dual graph of the
London street network can be framed in a model of growth
with competition for space, i.e., as a space-filling phenomena
in a capacitated limit [22], where the London’s green belt,
adopted in the 1950s, acts as bias and a constraint on the free
growth of the network.

Equation (1) allows us to forecast the growth of the network
E(N ):

E(N ) = CE[
1 + a

(
CN

N
− 1

) rE
rN

] , (2)

where a = exp[rE(t0E − t0N )] is constant, and the evolution
of the average degree is 〈k(N )〉 = 2E/N . Note that CE and
CN are the capacities of the edges and nodes respectively
while rE and rN are the respective rates of change for edges
and nodes. These functions are plotted in the bottom panels
of Fig. 4. From the behavior of the average degree, it is
possible to trace how London’s street network evolves from a
more clustered topology in the information space to a more
treelike one. Assuming that the parameters of the logistic
functions are stable, we can predict the asymptotic value of
such quantities, i.e., 〈k∞〉 = 2E∞/N∞ = 2CE/CN ≈ 3.62.

IV. TOPOLOGICAL PROPERTIES

The topological properties of the network are well described
by the connectivity distribution P (k), which tells us the
frequency of vertices having a certain number of neighbors, or
connectivity, k. This measure has been applied in the analysis
of cities in several studies [11,12,14] and it has been concluded
that it has a broad distribution and can be considered scale-free.
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FIG. 5. Degree distribution for the dual London street network
for different time slices. In the insets the same plots are displayed in
order to highlight the fat tail behavior.

As we mentioned before, we find that the scale-free behavior
is an artefact of the ICN principle.

In Fig. 5, we show the degree distribution of the network
at different time slices. The plots are all well fitted by
log-normal distributions (adjR2 > 0.98). This observation is
quite relevant, since the hypothesis that the dual space of road
networks is scale free implies a self-organizing dynamics in the
information space [23,24]. Yet, the log-normal distributions we
observe could be more accurately described as a multiplicative
process a la Gibrat [25].

In the left panel of Fig. 6, we show the diameter of the
network diam(N ) as a function of the number of vertices. It
is interesting to note that even if the networks are not scale
free, they maintain some of the properties characteristic of
self-organized networks. For instance, we see that the diameter
of the network grows with the scale of the logarithm of its size,
a property typical of small world networks [26]. This means
that the city, despite its complexity, is easy to navigate. We
speculate that the navigability of the city, as expressed by the
logarithmic dependence of the diameter of the information
space in respect to its size, is a constitutive property in the
evolution of London’s street networks.

FIG. 6. (a) The diameter of the network diam(N ) as a function of
the number of the vertices. (b) The average path length of the network
apl(N ) as a function of the number of the vertices.

FIG. 7. (a) Number of vertices N (t) as a function of time for
minor roads. (b) Number of vertices N (t) as a function of time for
class A and class B roads.

In Ref. [17] we argued that the growth of a city is strongly
hierarchical in the sense that the major roads mostly predate
urbanization, which is interpreted as a process of gradual filling
of the blocks created by class A and class B roads with minor
roads. This can be seen in Fig. 7, where the number of roads is
counted as a function of time for minor roads in the left panel
and for class A and B roads in the right panel. Even if class
A and B roads absorb the main traffic flows in the city, their
number is always at least two orders of magnitude less than the
minor roads. It is also interesting to notice how the number of
vertices for major roads at the last point—the 2010 network—
is lower than the previous one—1990 network. This dip in the
line reflects the fact that the major roads undergo a number
of complex phenomena related to splitting and, in this case,
merging, due to the completion of major road construction
executed in fragmented segments over time.

In order to characterize the behavior of roads at a high level
in the hierarchy, which form the backbone of the city, in Fig. 8
we show the cumulative degree distribution for the networks
formed just for the major roads (A and B roads plus mo-
torways). Interestingly enough, these distributions are not log-
normal, but appear to follow a truncated power law or a double-
Pareto distribution with a cutoff point around 10 < k < 20.
This same behavior was noticed already in a study of the
national road networks in the United States, England, and
Denmark [15]. In particular, the exponent found in the upper
tail of the distribution in England in Ref. [15] is comparable to
those we find for London. This finding suggests that a truncated
skew distribution is a consistent characteristic for major roads
in the dual space.

V. A SPACE-FILLING MODEL

Since city growth is a very complex phenomena, it has been
mostly represented using algorithmic approaches [10,27,28].
These approaches consider street segment portions [27], or at
least street segments themselves [14], to be the basic elements
in the evolution of street networks. However, our analysis
questions the validity of this assumption. Street segments often
do not emerge as constitutive elements of the network but
rather derive from the fragmentation of larger segments by
their intersection with new roads. On the other hand, major
roads, interpreted as vertices in the dual representation, often
do not emerge as single roads but are a result of merging of
different roads.
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FIG. 8. Cumulative degree distribution for the network formed
by class A and B roads over time.

Here we introduce a space-filling model to explain the
emergence of the double-Pareto distribution for the major
roads (see Fig. 8) [29]. We generate roads in the dual space
as a result of a merging process and the street segments in
the metrical space as a result of fragmentation. The main idea
of the model is that major roads serve to feed the city center
with resources (energy, materials, workers). Nodes (transport
stations) emerge along these large roads, and new roads are
created in order to connect these nodes to existing intersections
nearby.

In model 1, we start from a unit square area equally divided
by four lines, all crossing in the center of the square (see top left
panel of Fig. 9). Each intersection splits a road in individual
street segments. At each time step we randomly pick up a street
segment i, of length li > 0.05, with probability Pi proportional
to its length li , Pi = li/

∑
j lj . Then we create a new node at

the middle point of this street segment and we connect this
new vertex to the closest visible intersection, thus adding a new
street segment. The model stops when there are no segments of
length larger than 0.05 anymore, i.e., when the available space
is filled. This simple model, even if not particularly realistic,
generates in the dual space a similar distribution to that found
in London (see right panel of Fig. 9). Other ingredients can
be added to reproduce shapes that are more similar to the
structures we measure in reality, such as a maximum degree
for the intersections, a bias on the shape factor, and so on.

FIG. 9. (Color online) Top panels: model 1. Left panel: a realiza-
tion of the model with 800 time steps. Right panel: cumulative degree
distribution measured for the model. Bottom panels: model 2. Left
panel: a realization of the model with 450 time steps. Right panel:
cumulative degree distribution measured for the model.

In the bottom panels of the same figure we show a more
realistic realization of the model, based on the same space-
filling principles. In model 2, we start with the same initial
conditions as in the previous model and we proceed in the
same way. At each time step we randomly pick up a street
segment, with probability proportional to its length. Then we
create a new node in the middle point of this street segment
and we connect it to the closest visible intersection, adding a
new street segment. The difference is that this time we put bias
on the areas of the generated polygons and on the angles at
the intersections. In particular we assume that the area of the
polygons formed by the street segments A(r) is an increasing
function of the distance from the center r , i.e., A(r) > 0.05e− 1

r ,
and that the angles at the intersections are greater than π/4.
Model 2 gives a more realistic morphology to the resulting
street network and at the same time preserves a double-Pareto
degree distribution with exponents similar to those found in
reality.

VI. CONCLUSIONS

A growing number of studies have demonstrated that the
dual representation of a street network is fundamental to
understand the dynamics of transportation networks in cities.
Here we show some of the limitations of the existing methods
for extracting such a network from planar graphs and we
propose a new method, the HICN, that is based on geometrical
and hierarchical features, which can be easily obtained from
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digital maps available in geographical information systems
(GIS) [30].

In the ICN method we use one parameter, the angular
threshold, which we choose to be π/2. The choice of this
value is mainly arbitrary and resides on the fact that in many
real cases roads which intersect to form an acute angle are
not considered as the same road in the information space.
One could argue about the sensitivity of the resulting dual
graph to this parameter. It is to say that in the hierarchical
approach there are just a minority of roads that intersect
with an angle minor than the one we choose. In fact, for the
case of London, the cases where the street segments form
angles smaller than π/2 belong generally to different road
hierarchies. As an example, in the 2010 London’s map the
angular threshold of π/2 applies just in the 2% of the street
segments. In the light of this, we can say that the choice of
an angular threshold less than π/2 would not affect the global
topological results of the network. Choosing a larger angle as
a threshold would fragment the roads, pushing this research
toward the space syntax approach, which considers two street
segments belonging to the same road when they are on the same
line of sight [31]. However, such an approach is beyond our
line of research. In the larger limit, i.e., choosing the threshold
to be π , the resulting dual network would be a so-called line
graph [32].

Using this methodology, we explore the growth of London’s
street network in the information space during a period of 224
years. The long time range covered by the dataset allows us
to look for stable statistical properties of the network over
time. We reach some unexpected conclusions regarding the

logistic laws governing the growth of the city and the analytical
prediction of the growth of the network and its average degree.
Further, we find that the topology of the information space can
be described by log-normal distributions and not by scale-free
distributions, as has been previously argued. This observation
reframes the interpretation of the information space in a
dynamics following Gibrat.

Moreover, we show that the topology of the major roads for
London is comparable with the results of previous studies of
large-scale road networks; i.e., it represents a truncated skew
distribution which resembles a double-Pareto distribution.
Unfortunately, since such distribution appears for less than
two decades, it is difficult to assess whether it is a power law
or not. However, we show that this kind of behavior can be
reproduced by a space-filling model. A novelty of this model
with respect to others is that the final planar graph is the result
of the fragmentation processes acting on longer segments and
that roads can be generated by a process of merging street
segments created in different times. This approach produces
more realistic results than the one that considers the resulting
planar graph representing a city as a mere addition of street
segments to one or more initial seeds.

The results shown here are based solely on the analysis of
the evolution of Greater London’s road network. Our previous
analysis [17] indicated that the geometrical properties of a city
strongly depend on the adopted spatial development policies. It
is therefore necessary to assess the validity of the conclusions
propounded in this paper in relation to other urban systems,
in order to find out if universal properties for the evolution of
urban systems can be established.
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