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Abstract

We employ a cellular-automata to reconstruct the land use patterns of cities that we characterize by two measures of spatial
heterogeneity: (a) a variant of spatial entropy, which measures the spread of residential, business, and industrial activity
sectors, and (b) an index of dissimilarity, which quantifies the degree of spatial mixing of these land use activity parcels. A
minimalist and bottom-up approach is adopted that utilizes a limited set of three parameters which represent the forces
which determine the extent to which each of these sectors spatially aggregate into clusters. The dispersion degrees of the
land uses are governed by a fixed pre-specified power-law distribution based on empirical observations in other cities. Our
method is then used to reconstruct land use patterns for the city state of Singapore and a selection of North American cities.
We demonstrate the emergence of land use patterns that exhibit comparable visual features to the actual city maps
defining our case studies whilst sharing similar spatial characteristics. Our work provides a complementary approach to
other measures of urban spatial structure that differentiate cities by their land use patterns resulting from bottom-up
dispersion and aggregation processes.
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Introduction

To address the challenges posed by rapid urbanization, ageing

populations, rising real energy costs, and environmental con-

straints, among others, methods to quantify the similarities and

differences between existing land allocations among cities are

essential. Such measures may allow comparisons between the

quality of life and general well-being of the resident population,

hence, bringing us a step closer to achieving an objective metric for

properly representing sustainability indices [1]. Defining a

measure to differentiate cities remains a critical challenge both

for domain practitioners and information scientists. We previously

demonstrated [2] that by combining the relative mixing of distinct

entities (business, residential, industrial sectors) in a given area and

their relative spread over the entire locality, we are able to quantify

the degree of similarity and distinctiveness of land use design

attributes among cities. In particular, we previously demonstrated

a procedure using a measure of spatial entropy and an index of

dissimilarity to capture the distinctness of the forces reflecting

dispersion and aggregation between the different land use types.

We showed that the combination of these two measures provide a

straightforward means of probing the common and unique

attributes of Singapore and other North American cities. For

example, we report that a distinctive spatial characteristic of cities

is for industrial districts to be consistently clustered and segregated

while residential are generally dispersed and mixed with business

areas thus confirming this long standing observation for many

developed cities. While this measure has also been utilized in other

research [3–5] in addition to other indexes which account for

accessibility, population density, residential property value and

passenger trip volumes, these studies are limited to single cities. In

contrast, here we use these measures as a basis to differentiate

many cities according to their land use spatial properties.

In this paper, we build from our previous work and investigate

the factors contributing to the emergence urban land use patterns

based on a dynamics that results from dispersion and segregation

mechanisms. A dynamical urban growth model is proposed that

aims to reconstruct artificial cities from the bottom-up with specific

spatial entropy and dissimilarity index values. This is a cellular

automata model that relies essentially on the ranges of influence of

the different land use sectors. These ranges determine the

aggregation tendencies of each sector which are diffused according

to power-law distribution (l{11=6) throughout the city extent, the

exponent of which we take from Bettencourt’s analysis of its

possible range of values [6].

Methods

We first describe the assumptions driving the development of

the cellular automata (CA) model that we use. The iterative

growth procedure is then detailed. Finally, the methods used to

compute the spatial entropy and dissimilarity index are presented.

We note that the term spatial entropy is used in several different

ways in the literature with its use here associated with the
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definition of entropy states as pertaining to land use activities

distributed across the city space. A long line of such spatial entropy

measures are indicated in [7–10]. The assumptions adopted to

drive the development of the model are as follows: The central

business district (CBD) is located at the original settlement site of

the city (as the CBD is typically located at or near the origin of the

market place in the city). The probability of developing a plot

depends on its value and the land value decreases rapidly,

following a power law distribution, with respect to the distance to

the CBD [11]. Note that this is a general assumption which

ignores local specific factors (e.g. the presence of particular

amenities or sites such as marinas, cemeteries or heritage sites)

which may increase or decrease the land value locally. Moreover,

the land value is the principal factor which determines the density

and type (i.e. business, residential and industrial) of the land

development, where business, followed by residential uses are

more likely to be developed than industries in high value land

plots. This type of land use type distribution with respect to land

values can be regarded as a simplication of the Von Thunen model

[12] first generalized to urban systems by Alonso [13]. When such

a development is created or expanding, its initial or incremental

size varies. Finally, residential buildings are not likely to be

developed within an area occupied or adjacent to industries, as the

latter would decrease the land plot value for potential residential

purposes.

Motivated by the above assumptions, a CA is proposed where

the cells, i.e., a land plot unit -a pixel -of 64 m2 of a given sector

are injected into a base city map, see Fig. 1 for the example of

Singapore, at each iteration until all land use cells (that is, total

number extracted from the actual city land use zoning map) are

allocated and placed. The model is initialized with a single

business seed located at the likely original site of settlement which

constitutes the CBD. The dispersion of residential and business

cells is governed by a power law probability density function (Eq.

1) where the probability of developing these activities decays

rapidly as the distance to the CBD increases:

CRDB(l)~l{a ð1Þ

with a~
11

6
and l is the distance from the CBD. l ranges from

0;L½ � where L is the distance between the CBD and the farthest

location within the city boundaries. The exponent value is taken

from Bettencourt’s analysis [6] but it is also consistent with the

values of power law exponents that arise in studies of the fractality

of cities [14]. This power law distribution reflects the rapid decay

in the land value radiating from the CBD. The probability of

development for industrial buildings often follows a reversed trend

where the probability increases rapidly as the distance to the CBD

increases, i.e. the exponent becomes positive, and this is the

assumption we use here. Further details on the effects of the spatial

resolution upon the computation of both the spatial entropy and

dissimilarity index can be found in [2]. Note that in this paper,

series of experiments were conducted to evaluate and identify a

sufficient and suitable spatial resolution to measure spatial entropy

and to best discriminate land use plots according to their

dissimilarities; Those experimental outcomes were utilized to set

a satisfactory spatial resolution here, i.e., 64m2 per pixel.

Following this random dispersion process, a cell of type T in {R,

B, I} (where R = Residential, B = Business, I = Industrial), is

placed at some location on the two-dimensional base map. Then,

the cell aggregates with other cells of the same type found (if any)

in the area whose radius is defined by the range of influence rT , a

distance measured in pixels where each pixel is of actual length

8 meters. In this model, only three parameters are identified and

varied in our study to reconstruct the city land use patterns where

the ranges of influence for each land use sector are defined as

frR,rB,rIg for the residential, business and industrial sectors

respectively. These parameters determine the aggregation levels of

the land use sectors: The higher rT , the more clustered the land

use cells will be. Note that the ranges of influence also affect the

dispersion degree to some extent at the local level.

A relatively small range of influence would tend to produce

more dispersed developments in the area delimited by the range of

influence. Nevertheless, this dispersion degree due to the range of

influence may be mitigated by the growth of multiple clusters

which may eventually merge with each others. The growth

iteration loop is now detailed.

Figure 1. The Singapore model. Highlighted in the right figure are the areas that remains (yellow color) after non-developable lands are removed.
doi:10.1371/journal.pone.0080309.g001
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The growth iteration loop
nR, nB and nI are set as the numbers of residential, business and

industrial pixels found in the actual city map, see Fig. 2 where rR,

rB, rI are set manually. Parameter screening experiments over the

ranges of influence are reported later. A map location or pixel

(with an actual length equal to 8 meters) is said to be

‘‘developable’’ if it is land (i.e. not a water area) and not already

occupied one of the land use sector activities. Constrained models

rely on simplified city maps M ’, see Fig. 1, where forests,

distribution centres, parks, reserved lands and roads are not

considered as developable land plots. When a cluster is ‘‘grown’’ or

created with a given size S of cells, the new cells are placed at the

periphery of the cluster at random with the distance to cluster

equal to rand(4), i.e. 468 = 32 actual meters. This signifies that

when new developments are built, these would not be constructed

immediately right next to another one but rather in the area that

we assume here to be within 4 pixels or an average of 32 meters in

actual units. If no space is available, in other words if the cluster is

completely surrounded by other developments, then the given

cluster is not expanded further.

N Initialization :

– Set nR, nB, nI , rR, rB, rI

– Set CBD location at the city’s original place of settlement

– Set maximum jump distance L equal to the distance

between the CBD location and farthest developable land

location in the map M ’

– Set maximum cluster cell incremental size s~100

– Create seed cell cluster of type B with size S = rand(s) at

CBD location; decrement nB by S

N Repeat until nR~nB~nI~0 :

1. Select available, i.e. nTw0, cell type T at random

2. Set random location (x,y) where the Euclidean distance

from the CBD is a random variable drawn from

CRDB(l)~l{a i f T~~R _ B, w i t h a~
11

6
a n d

0ƒlƒL. When T~~I the exponent is positive.

3. If land plot at location (x,y) is developable then Look up

for closest cluster of cells T in area centered at (x,y) with

radius rT :

– Set S = rand(s)

– If a cluster is found then make it grow by size S

– Else, create a new cluster T of size S at location (x,y)

– Decrement nT by S

4. If T = = I and its location is adjacent to a cluster of type R

then remove cluster of cells R and increment nR

accordingly.

In the next section, we will detail the procedure for computing

spatial entropy and the dissimilarity index.

Spatial entropy and the dissimilarity index
We now present the procedure for computing the relative

spatial entropy ŜST and dissimilarity index D of different land

types. We first consider a land use zoning map M as a regular grid

composed of k frames. Each frame is itself constituted of Nk~l|l

pixels. As the zoning maps are colour-coded by land use type, a

pixel is similarly categorized by its colour value. Given a land use

type T , the density of pixels of type T per frame is denoted by

pk~t=Nk where t is the number of pixels of type T found in the

frame. This measure of spatial entropy evaluated per frame is

utilized to examine the dispersion of land use types in cities. For a

land use type T , the entropy is given by:

ST (M)~{
X

k

pkln(pk)z(1{pk)ln(1{pk)½ �

Figure 2. The Singapore master plan. The actual land use map depicted in Fig. 3 was extracted from the URA ((Urban Redevelopment Authority))
Singapore master plan 2008 where the residential, business and industrial land use sectors are the aggregations of relevant sub-categories. See
Appendix S1 for details and data sources.
doi:10.1371/journal.pone.0080309.g002
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and is normalized as:

ŜST (M)~
ST (M)

ST (M ’)

where M ’ is a copy of M with same density of pixels T but with

the latter being randomly distributed (using a uniform distribution)

over the city land. We have conducted sensitivity analysis (which is

not reported here) to examine the variance in the resulting spatial

entropy measurements and these results indicate that the variance

was negligible since differences were only noted at the

10{3; 10{4
� �

order using sets of 10 independent spatial entropy

computations with unique seeds, different zoning maps and frame

length values. When ŜST (M)~1, pixels T are dispersed through-

out all the frames, whereas when ŜST (M)~0, this indicates that

pixels T constitute a single cluster.

We then employ the dissimilarity index to characterize the

degree of aggregation/segregation [15] between land use types.

Given two land use types T1 and T2, the dissimilarity index is

expressed as:

D(T1 DT2)~
1

2

Xk

i~1

D
t1i

NT1

{
t2i

NT2

D

with NT being the total number of pixels T found in the zoning

map. The limit D(T1=T2)~1 implies that the land uses of types T1

and T2 are fully segregated whereas D(T1=T2)~0 indicates an even

distribution of both land use types throughout the frames.

The computation of both indexes depends on the length l

utilized to define the frames. We previously demonstrated that a

suitable length frame to compute entropy is lS~8 meters whereas

lD~64 meters for the computation of the dissimilarity index.

Results and Discussion

We first report and detail our results for the city state of

Singapore. We then apply our CA approach to a selection of

North American cities, whose simulation outcomes are used for

our comparative analysis.

Emergence of the land use patterns in Singapore
Fig. 3 depicts two illustrative simulation outcomes compared

with the actual land use of Singapore. The unconstrained model

Figure 3. The Singapore land use patterns. Actual versus simulated city maps with and without compartmental constraints. Blue, green and red
coloured pixels correspond to residential, business and industrial areas respectively. The actual map of Singapore was adapted from the Singapore
Urban Redevelopment Authority master plan 2008 in which we discarded land use categories that are not directly related to the residential, business
and industrial sectors.
doi:10.1371/journal.pone.0080309.g003

Table 1. Simulation results summary - spatial entropy.

Simulated values - ÆŜæ Actual values - Ŝ

City R B I R B I

2*Singapore unconstrained 0.29560.006 0.30760.007 0.09760.001 2*0.290 2*0.336 2*0.125

constrained 0.28160.003 0.31060.006 0.11260.011

Houston 0.61660.002 0.26460.002 0.15760.002 0.504 0.277 0.177

Las Vegas 0.39360.001 0.23960.003 0.20160.013 0.467 0.225 0.221

New York 0.52660.001 0.33960.003 0.27260.002 0.663 0.408 0.316

San Francisco 0.53260.003 0.30960.006 0.26460.019 0.606 0.403 0.232

Seattle 0.44060.004 0.22260.003 0.16160.010 0.493 0.279 0.141

Toronto 0.40560.002 0.33060.003 0.17360.006 0.348 0.259 0.137

Vancouver 0.50560.002 0.27960.003 0.19160.017 0.668 0.373 0.214

Washington DC 0.51160.006 0.30660.004 0.19560.027 0.506 0.252 0.174

The mean and standard deviation values were computed over 10 individual repeat simulation runs using unique seeds. Results for all cities are based using the
compartmental constrained models, except for Singapore land use which was also reconstructed using the unconstrained approach. Note that the standard deviations
of the different trial measurements in the average is 2.67% of the mean value (0.74%, 1.37%, 5.89% for R, B, I respectively), indicative of the robustness of the evolved
patterns.
doi:10.1371/journal.pone.0080309.t001
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does not include any land constraints where distribution centers,

reserved lands, forests, parks, roads and military sites are available

for development in contrast to the constrained model which

considers these constraints and thus limits the areas available for

residential, business and industrial development. The uncon-

strained model can be regarded as a single growth container with

no inner sub-compartments. On the other hand, the constrained

model devises sub-compartments which may physically limit the

growth of the land use sectors.

Tables 1 and 2 list the actual spatial entropy and dissimilarity

values computed for the city state of Singapore. We note that

residential and business areas are equivalently dispersed through-

out the frames (ŜSR&ŜSB&0:310). In contrast, the entropy

ŜS~0:125 of industrial areas indicates that industries are relatively

more clustered. The residential/business coupling displays the

lowest degree of segregation. In contrast, the business/industrial

and industrial/residential couplings are relatively more segregated.

The results indicate the tendency of the residential and business

communities to be situated far from the industrial sites and vice-

versa.

Table 1 and 2 also summarize the entropy and dissimilarity

results obtained using the best-fit models using the constrained and

unconstrained maps. To obtain these results a series of parameter

screening experiments where conducted. Example parameter

screening results can be found in Appendix S1.

In Table 3, we observe that both models exhibit comparable

fitting results with
P

r2&0:0055+0:001. Nevertheless when

comparing maps resulting from these illustrative simulation runs,

depicted in Fig. 3, it can be observed that despite all maps sharing

similar quantitative spatial measures, their appearance differs

widely. Specifically, the unconstrained model compares poorly

with the actual map of Singapore. On the other hand, when

Table 2. Simulation results summary - dissimilarity index.

Simulated values - ÆDæ Actual values - D

City R |B B |I R |I R |B B |I R |I

2*Singapore unconstrained 0.80560.008 0.94560.006 0.93160.004 2*0.807 2*0.986 2*0.976

constrained 0.75860.014 0.93360.012 0.98060.003

Houston 0.67860.005 0.94860.007 0.93560.003 0.722 0.804 0.902

Las Vegas 0.74060.009 0.97060.011 0.94860.010 0.801 0.949 0.995

New York 0.62860.007 0.89460.006 0.80360.005 0.570 0.772 0.833

San Francisco 0.74460.022 0.96260.021 0.94360.007 0.791 0.904 0.910

Seattle 0.70060.014 0.92560.015 0.95160.004 0.775 0.925 0.966

Toronto 0.78860.005 0.94060.007 0.96860.002 0.854 0.976 0.964

Vancouver 0.57460.016 0.96560.012 0.95560.006 0.765 0.761 0.925

Washington DC 0.63360.018 0.97360.011 0.96060.010 0.863 0.910 0.921

The mean and standard deviation values were computed over 10 individual repeat simulation runs using unique seeds. Results for all cities are based using the
compartmental constrained models, except for Singapore land use which was also reconstructed using the unconstrained approach. Note that the standard deviations
of the different trial measurements in the average is 1.14% of the mean value (1.71%, 1.14%, 0.58% for RDB, BDI , RDI respectively), indicative of the robustness of the
evolved patterns.
doi:10.1371/journal.pone.0080309.t002

Table 3. Simulation fitting results summary.

Fitted parameters Error Base

City rR rB rI v

P
r2

w v

P
r’2w

2*Singapore unconstrained 50 175 250 0.00560.001 3.90560.004

constrained 50 100 1250 0.00760.001 3.16660.003

Houston 5 150 400 0.03860.002 3.57660.001

Las Vegas 5 150 500 0.01360.001 3.14960.005

New York 5 80 200 0.04560.002 2.09260.002

San Francisco 5 100 600 0.02460.003 2.83360.005

Seattle 5 100 1100 0.01360.001 3.48760.003

Toronto 30 130 1100 0.01660.001 3.49460.002

Vancouver 2 50 1000 0.11860.008 2.72060.006

Washington DC 5 100 1000 0.06560.007 3.25760.004

The error column reports the sum of squared residuals over the spatial entropy for each land use type and dissimilarity indexes between the actual city map and best-fit
reconstructed maps. The base column details the fitted results using the constrained models and a random uniform distribution of the land use sectors throughout the
city maps. Thus the base column reports controlled experimental results which highlight the differences when no dispersion and aggregation mechanisms are
implemented. The above result shows that the model reported is three orders of magnitude statistically more accurate than a random growth model.
doi:10.1371/journal.pone.0080309.t003
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Figure 4. Parameter screening for the Singapore model for the range of influence for residential/business and industrial areas (Left
column: unconstrained; Right column: constrained). Preliminary experiments were conducted to identify potentially suitable range values
(highlighted in coloured text in the figures) for the respective ranges of influence for the three land use sectors (residential - blue, business - green
and industrial - red) for the city state of Singapore. These experiments assisted in limiting the search space to find the best-fit parameters to match
the actual spatial entropy values given the specific number of land use cells (pixels), i.e &5|104 , &1|106 and &1:5|106 for business, residential
and industrial pixels respectively in Singapore. Similar experiments were conducted for our selection of North American cities but these are not
reported here.
doi:10.1371/journal.pone.0080309.g004

Figure 5. Parallel coordinate plot of squared residuals for a limited set of model parameter configurations for the Singapore model
(Left: unconstrained; Right: constrained). Using the range values determined in preliminary experiments (Fig. 4), we conducted a limited set of
experiments to find the best-fit model parameters. Each column reports the squared residual for each target spatial entropy and dissimilarity indexes
values extracted from the actual land use map of Singapore. From these sets of experiments, we identify the sets frR~50,rB~175,rI ~250g and
frR~50,rB~100,rI ~1250g as the best-fit parameters for the unconstrained and constrained models respectively. Similarly, further experiments were
conducted to identify the best-fit model parameters for the remaining cities.
doi:10.1371/journal.pone.0080309.g005
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comparing the actual map of Singapore and the map based on the

constrained land, we observe a stronger visual resemblance.

When examining the best-fit parameters (Figs. 4 and 5), we first

note that both models share the same range of influence for

residential areas with rR~50 an actual distance of 400 meters.

The constrained model exhibits a higher rB than the uncon-

strained with a difference 75 pixels or 600 meters. In contrast, the

industrial ranges of influence are consistently one order of

magnitude higher or a difference of 1000 pixels or 8000 meters.

This relatively large rI value suggests that the compartmental

constraints impact heavily on areas available or suitable, when

considering the land value, for industrial purposes in Singapore:

The scarce availability of suitable areas for industrial purposes is

here compensated by a significantly higher rI which lead to the

formation of larger industrial clusters. Nevertheless these clusters

are fragmented locally due to the presence of transport infrastruc-

tures (i.e. roads). Whereas in the unconstrained model, we observe

an almost homogeneous distribution of tightly clustered and

medium sized industrial developments.

Fig. 6 shows the dynamics of ŜS entropy and D dissimilarity

measures against the number of cells created during the iterative

growth process using the constrained model. It can be noted that

the spatial entropy stabilizes (with ŜSR&ŜSB&0:3 and SI&0:1)

when the total number of created cells reaches half a million. Little

fluctuations in vŜSTw over the next two million created cells can

be observed whereas the dynamics of the dissimilarity index differs

where D reaches equilibrium after the growth of at least two

million cells. This indicates that the dispersion process settles first

when compared with the aggregation process which continues to

vary to some extent as new cells are created.

Reconstructing and differentiating urban land use
patterns

We now consider applications of the model to eight represen-

tative US and Canadian cities with populations all over 500,000 so

that we might make comparisons with Singapore. Fig. 7 illustrates

the best-fit reconstructed land use maps for the selected American

cities. We observe that the visual resemblance differs with Seattle,

Toronto and Washington DC presenting, from a qualitative point

of view, the best resemblance with the actual land use maps. We

note that these cities tend to be more structured along the lines of

cities that have developed with less sprawl than the other cities in

the set although topographic considerations are also important as

in the case of New York City.

A common difference can be observed in the remaining cities

where a gradient in residential density is noted in the reconstructed

land use patterns; whereas a relatively more homogeneous

distribution of residential building is observable in the actual land

use maps. This gradient pattern results from the land value power

law distribution function used in the model which leads to the

concentration of residential areas around the city cores. Although

this currently depreciates the visual resemblance between recon-

structed and actual land use patterns, we hypothesize that this

issue is due the two-dimensional nature of the land use maps.

When considering the elevation of buildings, it is possible that we

may retrieve this observed gradient in residential density where

high-rise buildings are likely to be found around the CBD, whereas

low-density residential areas would be located in the outer city

areas. This may merit further investigation in future work.

Moreover, when examining the actual land use maps of

Houston and Las Vegas, we note that multiple business clusters

exist with no single CBD clearly noticeable, and this accords to our

impression that these cities are much more recent in origin,

developing very rapidly during the last half century when the CBD

has been in decline in many North American cities. This contrasts

with the reconstructed land use map where a relatively large CBD

can be observed. Moreover, we note that for all other land use

maps, including both reconstructed and actual ones, a principal

CBD can clearly be distinguished. In the actual map of Las Vegas,

we note the presence of secondary large business developments

situated along Rancho Drive which connects the CBD to the

north-western part of the city with this particular feature

observable in the reconstructed map of Las Vegas. With regard

to Houston, we may consider the relatively large area where

Figure 6. Dynamics of spatial entropy and dissimilarity index
against number of cells. These results were extracted from a single
illustrative simulation run.
doi:10.1371/journal.pone.0080309.g006
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Figure 7. Reconstructed versus actual city land use maps. Simulated figures is randomly chosen representative sample of 10 runs whose
statistical resemblance to actual land use is reported in Tables 1–3.
doi:10.1371/journal.pone.0080309.g007

Figure 8. Cities differentiated by ranges of influence. The bubble size denotes the total land area of the city.
doi:10.1371/journal.pone.0080309.g008
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potentially, multiple business clusters can be observed due to the

presence of multiple cities, each of which, would exhibit a distinct

business core. In the current model, a single seed, i.e. the CBD was

introduced in the model initialization. Utilizing multiple seeds is

expected to improve the accuracy of the results, but for purpose of

simplicity and to illustrate the general validity of our method, we

restrict our discussion to a single source initialization. Finally, note

that Houston is the only city from our selection which does not

follow a planned zoning map whose potential implications remain

to be investigated further.

Figure 8 depicts the cities differentiated by their best-fit ranges

of influence. No clear correlations can be identified between the

total city areas and ranges of influence. This is rather counter-

intuitive as we expected the range of influence for industrial

developments to increase as the land area increases, indeed all

cities exhibit low spatial entropy for industrial areas with highly

clustered industrial development clearly observable. As industries

tend to be located in the periphery of these cities, if the city area

increases, then we might naively expect the industrial range of

influence to increase accordingly to maintain the formation of

large industrial clusters. Nevertheless, we observe that for some

large cities such as New York City or Houston, the range of

influence is relatively low varying from 200 to 400 pixels (1600 to

3200 actual meters). In contrast, smaller cities, namely Seattle,

Washington DC, Vancouver and San Francisco present higher

ranges of influence for industries ranging from 500 to 1000 pixels.

We also note that the range of aggregation level for business areas

(rBusiness) is generally twice that of residential (rResidential ). On the

other hand, range of industrial areas (rIndustrial ) is an order of

magnitude higher than both rBusiness) and rResidential . This

numerical finding is consistent with our previous claims that

industrial sectors are more significantly clustered compare to

residential and business establishments.

Quite clearly from Fig. 8, the newer cities of Las Vegas and

Houston which are cities of the automobile age with hardly any

public transport, display a bigger spread of business activities than

the older east coast cities of New York and the Canadian cities of

Vancouver and Toronto. This mix also shows a mild correlation

with size in terms of land area but one problem that we have with

all this analysis (and this is generic to the field), is that city size

definitions are highly variable and the maps that we have sourced

to develop this work are not chosen with the best boundary

definitions in mind, largely because we have no control over these

issues. However what we do find is that in a planned city-state such

as Singapore, the ranges over which activities segregate or cluster

are much larger than those for more organically growing cities.

Planning control is thus likely to destroy natural patterns as

implied by comparison of these measures in Singapore with the

North American cities. This suggests that we should develop

further research along comparative lines which deals with different

political, cultural and developmental regimes with respect to such

urban patterns.

In conclusion, we have reported a procedure for simulating the

emergence of land use patterns observed in Singapore and other

North American cities. Using cellular automata, we have shown

that we can evolve visually comparable spatial patterns of cities by

growing the actual geographical areas using: i). diffusion and

aggregation dynamics, and ii). imposing actual land use constraints (i.e.

defining non-developable areas). Simultaneous recovery of six

independently measured attributes (SR, SB, SI , DRDB, DBDI , DRDI )

from only three parameters (rBusiness, rResidential , rIndustrial ) hints at

the robustness and statistical accuracy of our paradigm. These

define our directions for future work but we are optimistic that this

approach will yield simple growth models that define patterns of

different urban activities that can be traced to a small, simple and

parsimonious set of key physical parameters.
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