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The largest cities, the most frequently used words, the income of the richest countries, and the most wealthy
billionaires, can be all described in terms of Zipf ’s Law, a rank-size rule capturing the relation between the
frequency of a set of objects or events and their size. It is assumed to be one of many manifestations of an
underlying power law like Pareto’s or Benford’s, but contrary to popular belief, from a distribution of, say,
city sizes and a simple random sampling, one does not obtain Zipf ’s law for the largest cities. This pathology
is reflected in the fact that Zipf ’s Law has a functional form depending on the number of events N. This
requires a fundamental property of the sample distribution which we call ‘coherence’ and it corresponds to a
‘screening’ between various elements of the set. We show how it should be accounted for when fitting Zipf ’s
Law.

Z
ipf ’s Law1-3, usually written as x(k)~xM=k where x is size, k is rank, and xM is the maximum size in a set of N
objects, is widely assumed to be ubiquitous for systems where objects grow in size or are fractured through
competition4-6. These processes force the majority of objects to be small and very few to be large. Income

distributions are one of the oldest exemplars first noted by Pareto7 who considered their frequencies to be
distributed as a power law. City sizes, firm sizes and word frequencies4,8,9 have also been widely used to explore
the relevance of such relations while more recently, interaction phenomena associated with networks (hub traffic
volumes, social contacts10,11) also appear to mirror power law-like behavior. Zipf ’s Law has rapidly gained iconic
status as a ‘universal’ for measuring scale and size in such systems, notwithstanding the continuing debate as to
the appropriateness of the power law (or ‘1/k’ behavior) and the mixed empirical evidence which remains
controversial3,4.

Here we argue that the very definition of the objects comprising the system in the first place has to be
undertaken with extreme care12. Many real systems do not show true power law behavior because they are
incomplete or inconsistent with the conditions under which one might expect power laws to emerge13. We will
show that the origin of 1/k behavior is considerably more subtle than expected at first sight and than is usually
stated in the scientific literature. Here we report on a surprising and usually ignored property which points to the
fundamental importance of the nature or the ‘coherence’ of the sample (or sub-sample) of objects or events
defining systems of interest whose objects may follow a perfect Zipf ’s Law or may markedly deviate from it. The
vision proposed here provides new perspectives on the meaning and interpretation of the informative content of
Zipf ’s Law and we propose an analysis to extract new and useful information from this novel property.

A spectacular and surprising consequence of the coherence characterizing Zipfian sets is that in general Zipf ’s
Law does not hold for subsets or a union of Zipfian sets. In fact, for subsets, some missing elements inevitably
produce deviations from a pure Zipf Law’s in the subset, especially when these ‘holes’ occur for the largest
elements of the original set with this problem being crucial for the leading elements of the set such as the largest
cities in a country. Similarly a union or aggregation of Zipfian sets does not inherit the coherence property of the
original sets because replicas or very similarly sized elements destroy any integration in the aggregate sets. The
reason why word distributions are not good candidates to test for coherence as are city, firm and income
distributions is that subsets of a text such as a paragraph or chapter tend to be coherent set and thus it is harder
to see deviations from Zipf ’s Law.

Cities in the US and the EU provide impressive concrete examples of such an argument. While Zipf ’s Law holds
approximately for the city sizes of each European country (France, Italy, Germany, Spain, etc), it completely fails
in the aggregated sets, that is in the EU. Conversely the size of US cities compose a near Zipfian set, in contrast to
the sets composed of the cities from a single state such as California, New York State, Illinois, Massachusetts.
These cannot be represented by a Zipf ’s Law. These two examples also suggest to us that this coherence or
integration property must be linked to the evolution of the elements of the Zipfian set. In fact, historically, the
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geographic level for Europe, at which an integrated evolution is
observed, is the national state, while in the US, the whole confedera-
tion, not each independent state, has collectively and organically
evolved towards a distribution of cities that follows Zipf ’s Law.
From this perspective, the US is an organic, integrated economic
federation, while the EU has not yet become so, and shows little
convergence to such an economic unit.

In some specific cases, we can give more concrete and simpler
interpretations of the coherence of a Zipfian set. In Fig. 1, we present
the evolution of the rank-size rule for the Gross Domestic Product
(hereafter GDP) of the top 100 national economies from 1900 to
2008. It appears that the more the world’s economies become globa-
lized, the more their national GDP compose a Zipfian set. Therefore,
we speculate that the Zipfian Law we observe for the GDP, and its
consequent higher degree of coherence in time, is a reflection of the
globalization process which is forcing a full integration of the world’s
economy. Krugman14 suggests that the world economy suddenly
became more integrated by the start of the First World War but then
departed from this in the 1920s. The distribution of GDP in 1914
suggests a little more coherence than 1900 and we might expect to see
a little volatility in the movement to and from a more globalized
world when we examine this data at a finer temporal resolution.

We briefly anticipate that the mathematical meaning of the coher-
ence of a Zipfian set can be made more cogent by considering a
different problem which we call the ‘backward problem’: how should
we generate a distribution that reproduces Zipf ’s Law? As we will see
in more detail in the argument that follows, we will find that the
distribution explicitly depends on the number of elements in the set.

This implies that the distribution must change at each draw of a new
element in order to take into account the internal coherence which
holds among Zipfian elements. Furthermore we show that there
exists a more fashionable way of considering the dependence of the
distribution on the size of the set in terms of a screening effect of the
largest elements of a Zipfian set. We will call this the ‘New York
effect’, which implies that in a Zipfian set, we cannot draw two or
more ‘New York’s’, for we would destroy the coherence of the set if
we did. In short a Zipfian set cannot contain such replicas.

Results
For richer or poorer: the coherence of the sample. Our thesis is
remarkably easy to demonstrate. Consider the income of 20 people
whose distribution satisfies Zipf ’s Law and where the maximum
income xM~x(1) is $1m. If we consider a sub-sample of the first
10 persons (the richest), then this sub-sample will certainly satisfy the
same Zipf ’s Law. However when we consider the second group of 10
persons (the poorest), the incomes of the first two persons are $1m/
11 and $1m/12, while the ratio of the second to the first is 11/12,
very different from the first two incomes in the richest set whose ratio
is 1/2. These differences apply to all the other corresponding ra-
tios between successive objects in the two subsets. In Fig. 2, we
elaborate this example first by ranking the incomes of the 390
billionaires resident in the US in 2010 (from the Forbes List15)
whose incomes, once ordered, approximately follow Zipf ’s Law.
This provides a highly graphic demonstration that by partitioning
two sets generated from one law, two laws are necessary to explain

Figure 1 | Zipf’s Law for National Gross Domestic Products 1900-2008. The Gross Domestic Products of nations appear to show a more and more a

Zipfian behavior over the last one hundred years. We propose a fascinating interpretation of this evidence in terms of globalization. In fact we have said

that a set is Zipfian if there exists an internal coherence among its elements. As the world has become more fully globalized, we observe that Zipf’s Law

holds for an increasing number for countries. In fact in 2000 and 2008 we observe that not only the highest GDPs satisfy Zipf’s Law (red line) but also the

top fifty economies and that the rank at which the deviation from a Zipf’s Law behavior starts increases in time, suggesting the idea that world economic

system is getting more and more coherent, i.e. globalized. Globalization is making the world fully coherent/integrated with respect to the richness

distribution among its units (i.e. countries) while this degree of integration has not yet been reached by the world’s national populations (see Fig. 3).

Sources: Wikipedia: various pages on GDP http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal) and http://en.wikipedia.org/wiki/

List_of_regions_by_past_GDP_(PPP).
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their resulting parts. This point has extremely wide ramifications for
all work on scaling systems and power laws in general, rank size and
Zipfian relations in particular. There is little evidence in the literature
that the importance of this point has been grasped, or if it has, it has
been widely ignored.

To explore its implications, from an elementary analysis of the N
objects in the full sample, we select an ordered sub-sample of all
objects below the rank k5k*. We examine this set as a rank-size
law where the new rank k’~1, 2, ::: is defined in terms of the original
rank k as k’~k{k�. The sub-sample now follows the relation

x(k’)~
x’M

½(k’=k�)z1z(1=k�)�%
x’M

½(k’=k�)z1� ð1Þ

where the new maximum is x’M~xM=k� and where the last express-
ion holds when k�ww1. Noting that in the original set, the ratio of
successive sizes is x(kz1)=x(k)~k=(kz1), in the sub-sample this
ratio is (k�zk’)=(k�zk’z1) which shows quite clearly that the sec-
ond set does not follow the same rank size rule as the initial set. In fact
for the subdivision in Fig. 2 where we divide the top 390 billionaires
into the first richest 195 and the second ‘poorest’, the ratio of the first
to the second in the second set, expressed in terms of the rescaled
rank k’~k{196, is 196=197%0:995 which is very different from the
expected ratio of 0.5 for a pure Zipf ’s Law. In the inset, we also show
the same failure for the second ordered set (red dots) which occurs
when the rank size is based on a pure Zipf ’s Law dimensioned to the
same income data.

An analogous problem arises if we consider two independent sets
where x(k)~xM=k holds for each which we then aggregate. It is clear
that Zipf ’s Law cannot hold for the aggregated set. For instance, if we
consider two replicas of the same set, then the union of the two
replicas cannot be described by the same law. Such elementary exam-
ples show, in a rather dramatic way, the crucial role played by a
property of internal consistency or completeness of the total set
under examination which we call ‘coherence’. A thorough examina-
tion and some reflection on empirical applications of Zipf ’s Law,
particularly to social systems, suggests that many applications to date
are based on systems where the data is incomplete in some obvious
way16. This is particularly so for city size distributions where arbitrary

subdivisions of countries and cities are often used and where there is
some evidence that systems that are developing independently, as for
example for cities within a well-defined political or economic jurisdic-
tion, are then aggregated into sets that ignore such entities. This is
always the case when, for example, we examine world cities17. These
issues elevate consistency in system and object definition into a new
open problem we will address here. Thus for Zipf ’s Law to hold, a set
of objects must not contain replicas of the kind just noted, nor must
the Law be applied to a sample of objects or events that is less than the
whole, unless the sampling is able to anticipate the structure of the
whole. This, as we will see, is a powerful and difficult criterion to meet.

Why we need more than a power law. When we say ‘‘There is more
than a power law in Zipf’’, we mean that although an under-
lying power law distribution is certainly necessary to reproduce the
asymptotic behavior of Zipf ’s Law at large values of rank k, any
random sampling of data does not lead to Zipf ’s Law and the devi-
ations are dramatic for the largest objects. We will see that coherence
in the entire dataset is necessary which may be interpreted in
terms of screening among different objects, an effect that is beyond
the underlying power law distribution. It implies that any system
which obeys this law must have internal consistency in its size
distribution or its sample. In this quest, it is worth noting that
Benford’s Law which reveals the dominance of small numbers with
properties akin to a power law, does not suffer from these problems
of sampling, for any random subset, union of sets, or aggregation
would still meet Benford’s Law18. In this sense, we consider Zipf ’s
Law to be much more subtle and informative than Benford’s in that
the system of interest used to demonstrate Zipf ’s Law is of crucial
importance to the relevance, hence applicability of the law.

Let us consider N objects (cities, word frequencies, etc.) distributed
according to the probability density p(x)*x{a. In sorting the size of
these objects, the rank k associated with the size x(k) corresponds to
the probability of finding k21 objects larger than x(k), between x(k)
and the maximum value xM. Then for rank k we can write

k{1~(N{1)

ð XM

X(k)

p(x)dx%(N{1)
1

a{1

� �
x(k)1{a ð2Þ

where k~1, 2, :::,N and we assume xM??. From Eq.(2), it is easy
to derive the rank size law as x(k)~Ck1=1{a from which Zipf ’s Law is
recovered when a~2. However, this argument only holds for large
values of k because we assume xM??. If we do not ignore xM, accept
that it is finite in a realistic case, and set a~2, we then explicitly
define the normalization constant C from the boundary values of the
support xm,xM½ � of p(x) in Eq.(2) as C~xmxM=(xM{xm). Using C,
we can then define the most appropriate rank size rule for empirical
analysis as

x(k)~
C

k{1
N{1

z
C

xM

ð3Þ

As expected, the rank size rule in Eq.(3) behaves asymptotically as 1/k
but for small values of k which is the region we tend to be mostly
interested in, the behavior of Eq.(3) shows a deviation from a pure
Zipf ’s Law due to the constant term C/xM present in the denom-
inator. The value of this constant also sets the rank �k<NC=xM above
which x(k) can be approximated by 1/k and below which the rank size
law deviates from a pure 1/k Zipf ’s Law.

A clear demonstration of the importance of this constant and its
effect on large values in a typical size distribution is illustrated in
Fig. 3 where we plot the rank order of the population of the top 61
world cities. The broken red line is a graphical representation of the
rank size rule from Eq.(3) which is based on a random sampling from
the density function x22 where we used the size of the largest and the
smallest cities in the set to estimate xM and xm. Its closeness to the

Figure 2 | Zipf’s Law for the Richest Billionaires in the United States. The

richest 390 persons in the US are billionaires whose wealth we plot against

their rank as the uppermost set of points (the first 195 richest being grey

circles, the second 195 poorest being red circles). The second set is the sub-

sample that we translate to the original ranks and plot as the set of red circle

points below the diagonal straight line which is the pure Zipf plot

associated with x(k)~xM=k. The inset is a pure Zipf plot dimensioned to

the entire set of 390 billionaires and the poorest sub-sample of 195. (Source:

Forbes List http://www.forbes.com/).
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observed population points is obvious but this is in stark contrast to
the pure Zipf ’s Law x(k)~xM=k which is the solid black line from
which the actual data and modified Zipf ’s Law in Eq.(3) differ. The
rank �k%18 and this immediately shows that for the top 18 cities
(which in fact comprise almost half the total population, 200m out
of some 400m), Zipf ’s Law is entirely inappropriate.

Moreover the shape of Eq.(3) reveals a subtle problem with respect
to the question of deviations from a pure Zipf ’s Law. In fact the rank-
size law found in Eq.(3) can be either concave or convex (in log-log
scale) for different values of the parameters. This means that there
exists a combination of the parameters for which the rank size in
Eq.(3) behaves as a pure Zipf ’s Law (i.e. xm~xM=N). However, this
is only an accidental result due to the specific dependence of the
shape of Eq.(3) on the parameters.

We can make this point more cogently by underlining the fact that
a mechanism which is able to recover the 1/k behavior only asymp-
totically completely misses the significant features of a Zipfian set of
values. In fact the largest values of this set (i.e. those values corres-
ponding to small values of k) are actually the main expression of what
we have called ‘coherence’ or consistency of the sample. In Fig. 1, we
have seen that the problem of sample coherence is particularly
important for the biggest values with the largest value in fact defining
the entire rank-size law. Therefore the rank �k of an independent
sampling cannot be interpreted as the breakpoint in the scale at
which an adequately approximated mechanism exists to explain
Zipf ’s Law because these values are indeed the core of the problem
addressed here.

The deviations most clearly observed in the rank size law of world
city sizes in Fig. 3 imply that this data set is an assemblage of objects
that do not form a coherent system. From casual but informed evid-
ence, we believe that the system of cities has not matured to the point
where these world cities are truly competing with one another for
scarce resources19 and thus cannot ever give rise to anything like a
pure Zipf ’s Law. In short, world city populations have not yet ‘glo-
balized’ sufficiently to form part of an integrated system (unlike
national GDP in Fig. 1) and thus are more likely to represent
Zipfian distributions that apply to country or region-wide systems
of cities that have in fact evolved in more integrated ways17. In Fig. 3,
the deviations from Zipf ’s Law are related to the fact that we are

looking at the wrong ‘scale’ at which to observe the coherence of the
sample. The right scale is more likely to be at the country level at
which Zipf ’s Law approximately holds for many countries as we
show in Fig. 4 and below in Fig. 6 (although there are exceptions
such as the UK).

The implications in all this are that departures from Zipf ’s Law
might represent some quantitative indicator of the lack of integration
(or cohesion) although this is a speculation beyond our immediate
concern here. It is worth noting from Fig. 3 that Zipf ’s Law works
extremely well for the largest values in many phenomena as in coun-
tries where cities have developed in a more integrated manner.
Nigeria is a good example which during its major growth period
was relatively isolated globally (see Fig. 4) and therefore this country
exhibits a nearly perfect Zipf ’s Law or, with respect to our interpreta-
tion, a high degree of coherence favored by the isolated growth. For
many other size-frequency distributions shown in Fig. 4, we can also
report phenomena where coherence is not expected and where
indeed Zipf ’s Law is not observed.

In fact, many applications of Zipf ’s Law reveal a severe lack of
coherence in their data and lead, as in the world city data set in Fig. 3
and Fig. 6, to the bigger question: what is missing? To address this in a
slightly more oblique fashion, we will now proceed in a somewhat
different way. In order to appreciate the importance of this problem,
we will define a backwards relation such that, given a rank-size law,
this would define the corresponding distribution as

k{1~(N{1)C
ð xM

x(k)

p(x)dx ð4Þ

where k~1, 2, :::,N ; x(k) is now given and p(x) is the probability
density function we are searching for. We can easily solve Eq.(4)
recalling that P(xM)~1 where P(x)~

Ð x
{? p(y)dy is the cumulative

distribution associated with p(x), and inverting x(k). Obviously if we
invert Eq.(3) and insert it in Eq.(4), we retrieve p(x)~C=x2 but the
important point that we want to stress is that in solving Eq.(4), any
dependence on N vanishes. This means that the rank-size rule
changes its shape, varying the number, for instance, of cities
but the underlying p(x) does not change whatsoever for N.
Equivalently we can say that to obtain Eq.(3), the number of cities
N and the normalization constant C are independent.

Instead when we deal with a pure Zipfian rank-size rule
x(k)~xM=k we find that

P(x)~1{

xM

x
{1

N{1
ð5Þ

We obtain p(x) by differentiating Eq.(5) with respect to x to get

p(x)~
xM

N{1
1
x2

ð6Þ

As expected, we find that the underlying inverse square pdf must be one
of the ingredients in order to obtain Zipf ’s Law. But the dependence on
N does not vanish anymore. This point is now much subtler than the
previous one. In fact we find that the normalization in Eq.(6) must
explicitly depend on the number of cities, that is xM=C~N{1. In
practice in order to obtain a pure Zipf ’s Law, this means that the range
of definition of p(x) depends on the number of elements in the sample.
This is linked to the observation made before that there exists a par-
ticular combination of parameters for which Eq.(3) reduces to a pure
Zipf ’s Law. The backward problem shows that in the framework of
independent samplings, we have to set N according to the range of the
pdf or the range according to N. We can see this dependence between C
and N as a consequence of the coherence that a Zipfian sample must
have. However, rather than adopt this somewhat artificial combination
of parameters in Eq.(3), we now argue that this coherence can be
interpreted in a different context in a more fashionable and natural way.

Figure 3 | Rank Size of World Cities and Deviation from Zipf’s Law. The

top 61 ‘world cities proper’ normalized as x(k)=xMplotted in the grey

squares are used to compute the modified rank size equation Eq.(3) –

dashed red line – compared to the pure rank size equation x(k)~xM=k
which is the solid black line. Note the value of �k, below which values do not

accord to Zipf’s Law in contrast to those above. The data is from the

compilation of 65 separate databases (Sources: Wikipedia http://

en.wikipedia.org/wiki/List_of_cities_proper_by_population).
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Figure 4 | Rank-Size Laws Illustrating Different Degrees of Coherence. Top Left: Rank-size for the largest world cities showing the absence of truly global

cities which have developed in relation to all other cities. Therefore the world is not a coherent/fully integrated system and represents the wrong scale at

which city size samples must be aggregated to obtain a Zipf’s Law. Instead Nigeria (green solid line) shows a nearly perfect Zipfian behavior. Nigeria which

is separate from the rest of Africa, represents a city system which has developed more uniformly in a more integrated fashion, The Nigeria rank size law has

been rescaled for clarity; Centre Left: Rank-size of the fifty largest European continental cities (i.e. the European part of Russia and UK are excluded). As in

the case of the world cities, we observe absence of coherence at this geographical scale; Bottom Left: River formations are mainly due to geographical and

morphological constraints on the Earth’s surface. Hence a Zipf’s Law is not expected and in fact the river rank size rule is well approximated by the curve

(dashed black line), predicted by an independent sampling procedure without any screening effect; Top Right: For the frequency of words in the Corpus of

Contemporary American English, a quasi-perfect Zipf’s Law is observed over the 2000 (and more) most used words. Linguistic systems are fully coherent

with respect to our interpretation of Zipf’s Law. Centre Right: If we rank the Gross Domestic Product (GDP) of world countries, we observe a Zipfian

behavior for the 30 richest. Bottom Right: As for words, a Zipf’s Law also appears in the frequency of usage of Python modules in a computer science

project domain. Sources: Nigeria from the Mathematica database see Fig. 5; the top 61 country populations is from Wikipedia, see Fig. 2; the top 50 continental

European city populations from http://www.citymayors.com/features/euro_cities.html; the top 161 river lengths from Wikipedia http://en.wikipedia.org/wiki/

List_of_rivers_by_length; top 2000 COCA words from http://corpus.byu.edu/coca/; GDP from Wikipedia http://en.wikipedia.org/wiki/

List_of_countries_by_GDP_(nominal); the frequency of Python module usage from http://www.algorithm.co.il/blogs/math/python-module-usage-statistics/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 812 | DOI: 10.1038/srep00812 5

http://www.citymayors.com/features/euro_cities.html
http://en.wikipedia.org/wiki
http://corpus.byu.edu/coca
http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal
http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal
http://www.algorithm.co.il/blogs/math/python-module-usage-statistics


A simple model for coherence: conditioned sampling. Instead of
varying the range of the original power law p(x)*x{2, we propose
that a screening or conditioning effect should be introduced into the
selection procedure with respect to our framework. The basic idea
behind such a concept can be exemplified using the distribution of
city sizes in the US. Suppose that at a certain point, we extract ‘New
York City’ from our 1/x2 distribution. After such an event in a ran-
dom sampling, there is still a probability that ‘Another New York
City’ could be drawn from the distribution. In reality of course, such
an event cannot happen because the largest cities screen one another
with respect to their growth dynamics.

A simple way to introduce such an effect is to make the sampling
conditional. Then after a certain value is extracted, a section of the

distribution around this value is thence excluded from the density.
We show this schematically in Fig. 5. In essence, we draw the size of
the first object x1 from the density p(x)!1=x2 that is normalized over
the range xm,xM½ � . The section to remove around x1 varies from x1min

to x1max and these bounds are computed so that the area of the
removed section is A

A=2~

ð x1 max

x1

p(x)dx[x1 max~2x1C=(2C{Ax1)

A=2~

ð x1

x1 min

p(x)dx[x1 min~2x1C=(2CzAx1)

9>>>=
>>>;

ð7Þ

The area A of the forbidden section is a priori arbitrary and we fix it to
be equal to 1/N where N is the total number of extractions. This slice
x1 min,x1 max½ � is then removed meaning that the subsequent object of

size x2 must be not be drawn from this area. The number of elements
drawn can be larger than N even if the area A51/N because the
forbidden area can be partially overlapping. The computation pro-
ceeds recursively in this fashion until the required number of objects
has been sampled as implied in Fig. 5.

In Fig. 6(a), we show a series of samples, normalized with respect
to their maximum values where the scaling is close to Zipf ’s Law but
where their position, hence actual populations are heavily influenced
by the lower ranked, larger-sized draws. In Fig. 6(b), we show
real data which corresponds to the city size distributions for several
different countries20. The sampled and real distributions in Fig. 6
are sufficiently different en masse to indicate that many real city
size distributions are incoherent in comparison to their theoretical
equivalents21. In Fig. 6(b), there are some countries such as the UK,
Russia, Iran and to a lesser degree France, where the capital cities
exercise a primate city effect which indicates extreme concentration
compared to other elements in their size distributions. Explanations
for these deviations are loose: cities serving empires beyond their
national boundaries, and highly centralized administrations, are
obvious explanations. Most other countries reveal the opposite in
that their largest cities have lesser sizes than might be expected if
Zipf ’s Law were to play out exactly. We also consider that screening
of one object with respect to another occurs at different hierarchical
levels. Thus we consider that conditional sampling of the data and

Figure 6 | Real (Zipfian) and Sampled Theoretical Rank-Size Law. Left (a): Eight sets of samples of 250 cities each drawn using the random conditioning

algorithm explained in the text, rescaled in order to have the same maximum value and compared with a pure Zipf ’s Law (black solid line). In the inset, we

report the average rank-size law (dashed orange line) of 200 simulated countries from which the eight reported in the main box are extracted. We compare

this with the rank-size rule produced by independent random samplings (red dashed line) and with the average over the 16 countries of panel b) (maroon

solid line). We observe that the conditioned sampling algorithm produces a striking result very close to a pure Zipf ‘s Law (blue solid line). Right (b): Rank-

size rules for the cities in 16 world countries collapsed in order to have the same maximum values and comparable with Zipf ’s Law for the same (black

solid line) (Source: Wolfram Mathematica online database).

Figure 5 | Successive Conditioned Draws. When we extract an object (or a

city size) such as x1, we remove a section (blue slice in panel 1) of the

probability density around the drawn value. See the text for the details of

how to compute the slice to remove (Eq.7). Then the density moves to the

reduced distribution in panel 2 from which the next object is drawn in the

same way with the slice associated with x2 being removed in panel 3.
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exploration of the extent to which cities screen one another is key to
an understanding of city size relations.

Discussion
This situation forces conceptual problems of a new type because up
to now, most researchers dealing with this problem have attempted
to develop a theory for Zipf ’s Law which is to be found in the
underlying distribution 1/x2. In fact we now see clearly that such a
theory cannot be developed without considering the problem of the
sample coherence which in cities, income distributions and in many
other systems whose signatures are believed to be described by power
laws, will always show itself up as the phenomenon we have referred
to as screening. The question of defining each individual object also
effects the coherence of the system because if objects are split and
disaggregated, or indeed merged and aggregated, their order changes.
Such can easily happen when we deal with objects that are defined by
social practice and are human artifacts such as cities22 or firms23. As
we consider Zipf ’s Law to be the ultimate signature of an integrated
system (say, for instance, the world’s economy in terms of GDP as in
Fig. 1), it is important to devise general models which include coher-
ence in a simple but generic way. In this line of reasoning, coherence
and screening could be the result of some kind of optimization in
growth processes or of an optimal self-organization mechanism of
the system with respect to some (finite) resources. This must be the
next step in providing new and novel perspectives on this entire area
of study.
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