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The street patterns of cities are the result of long-term evolution and interaction between various internal, social and eco-
nomic, and external, environmental and landscape, processes and factors. In this article, we use entropy as a measure of
dispersion to study the effects of landscapes on the evolution and associated street patterns of two cities: Dundee in Eastern
Scotland and Khorramabad in Western Iran, cities which have strong similarities in terms of the size of their street systems
and populations but considerable differences in terms of their evolution within the landscape. Landscape features have strong
effects on the city shape and street patterns of Dundee, which is primarily a shoreline city, while Khorramabad is primar-
ily located within mountainous and valley terrain. We show how cumulative distributions of street lengths when graphed
as log–log plots show abrupt changes in their straight-line slopes at lengths of about 120 m, indicating a change in street
functionality across scale: streets shorter than 120 m are primarily local streets, whereas longer streets are mainly collectors
and arterials. The entropy of a street-length population varies positively over its average length and length range which is
the difference between the longest and the shortest streets in a population. Similarly, the entropies of the power law tails of
the street populations of both cities have increased during their growth, indicating that the distribution of street lengths has
gradually become more dispersed as these cities have expanded.

Keywords: city growth; urban morphology; street patterns; size distribution; entropy measures

1. Introduction

The dynamics of urban morphology has been explored
from many different perspectives (e.g. Harris 1985;
Berechman and Small 1988; Yongmei and Junmei 2004;
Benguigu, Blumenfeld-Lieberthal, and Czamanski 2006;
Batty 2008, 2010), but for a better understanding of city
structure and the complexities of this dynamics, it is cru-
cial to quantify the different physical properties of those
structures. To advance this, we argue here that street net-
works are among the most important city structures, and
recently, there have been many studies of street patterns
and city growth based on socio-economic data (Batty 1971;
Wegener 1994; Makse, Havlin, and Stanley 1995; Hillier
1999; Barredo Kasanko, McCormick, and Lavalle 2002;
Berling and Wu 2004). There have been also been many
analyses of street patterns based on network science which,
in the last decade, has become highly significant (Cardillo
et al. 2006; Scellato et al. 2006; Jiang 2007; Barthelemy
and Flammini 2008; Masucci et al. 2009) while related
studies such as those by Xie and Levinson (2007), Lammer
et al. (2006), Jiang (2009) and Levinson and Huang (2012)
amongst others focus on the structural properties of road
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networks from the point of view of traffic and engineer-
ing. Furthermore, Marshall (2005) explains how different
layouts and patterns of streets contribute to better urban
design, addressing how design aspects of urban transporta-
tion might increase the functionality of cities.

By contrast, research on street patterns and urban
dynamics based on physical data and how they relate to
physical concepts is much less developed and remains in its
infancy. In particular, with few exceptions (Mohajeri 2012;
Mohajeri and Gudmundsson 2012), there has been little
attempt to analyse city growth and street patterns in relation
to landscape using entropy concepts. There is a clear need
for rigorous quantitative methods that explain (1) how city
geometry changes over time as a function of its size and of
external landscape constraints and (2) how changes in city
geometry affect the associated street patterns that deter-
mine how energy is distributed within the city in terms of
the flow of people and materials. One rigorous quantitative
method which has found extensive use in systems theory
and indeed in spatial interaction modelling is entropy anal-
ysis. Entropy statistics, which measures the variation of a
phenomenon with respect to its frequency across a given

© 2013 Taylor & Francis
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range, allows us to quantify changes in geometry as a city
grows and helps in assessing the plausible mechanisms for
the formation and evolution of city structure.

In this article, our main aim is to use entropy analy-
sis to show how the properties of street patterns, focusing
on street lengths, vary within a city and how this vari-
ation partly reflects external landscape constraints. The
second aim is to investigate the degree to which landscape
constraints, such as coastlines, mountain ranges and major
rivers, control the shape of cities by providing constraints
on their growth. This article is empirically grounded in
that it focuses on the associations between landscape, city
evolution and street patterns of two case studies, namely
the cities of Dundee in Scotland and Khorramabad in Iran
(Figures 1–2).

2. Case study exemplars: the geographical
background

We need to first justify the selection of these two cities
which are quite different in terms of both their physical
and cultural contexts. Both cities have clear boundaries.
Their overall shape is partly controlled by their land-
scape, primarily the coastline of the Firth of Tay in the
case of Dundee (Figure 1) and mountains and valleys in
the case of Khorramabad (Figure 2). This is somewhat
different from cities, such as Paris or Chicago, whose
landscape morphologies do not have such strong physi-
cal features. The availability of historical data and GIS
data sets for street networks of both cities also makes it
possible to carry out a detailed analysis of their street
networks.

0

(a)

(b)

1 2 km

WeightedNon-weighted

a

N

Figure 1. (a) Location of the city of Dundee, Eastern Scotland (image courtesy of Google Earth), with street patterns overlaid. (b) Aerial
view of the Dundee Docks with the Dock Street running diagonally across the centre of the picture (Guthrie aerial photography).

Notes: The rose diagrams (top-left) summarise the weighted and non-weighted trend distributions of all the streets (N = 9616). Each rose
presents the trend with a 10 degree interval and 0–360 degree azimuth (modified from Mohajeri and Gudmundsson 2012).
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(a) (b)

(c)

0 1 2 km
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Figure 2. (a) The city of Khorramabad in Western Iran. (b and c) Aerial views of the city of Khorramabad (Photo by Adam Jones,
Ph.D./Global Photo Archive).

Notes: Its geometry is largely controlled by landscape constraints, primarily mountain slopes or fronts and valleys. The two rose diagrams
summarise the general trend of all the 8481 streets using weighted and non-weighted data.

An additional set of reasons is the striking difference
in their history of evolution. Dundee has been developing
gradually over several hundred years; its inner part dates
back to the medieval times and is thus historically impor-
tant (Ferguson 2005; Watson 2006). The city, in fact, dates
back to at least to the twelfth century and has a current pop-
ulation of 143,390 (General Register Office for Scotland
2009). It is located along the north coast of a fjord, the
Firth of Tay Estuary, in Eastern Scotland (Figure 1) and is
Scotland’s fourth largest city. The city has a roughly ellip-
tical boundary, part of which is determined by the shoreline
of the Tay.

By contrast, the greater part of Khorramabad, in
Western Iran, is a very young city, mostly less than
60 years old. The city population is about 334,000 (Iranian
Statistical Centre 2007). It is located in the province of
Lorestan and is surrounded by prominent landform fea-
tures such as mountainscapes that form part of the Zagros
range (Figure 2). It thus provides an excellent example
of a rapidly expanding city subject to strong landscape
constraints. There exist detailed maps of the city since
1955, at which time it occupied only the small, narrow
(bottleneck) part of the present city (Figure 2). The south
and southeast and north and northwest parts of the city
extend to form ‘wings’ within its valley. The wings are

connected by a narrower pass through the mountains, which
functions as a natural bottleneck that constrains traffic
between the two parts of the city. At its narrowest, the
width of this bottleneck is only 1.1 km. The overall shape
of Khorramabad is broadly that of a crescent, with some-
what irregular boundaries that are clearly constrained by
the valley of the same name, its flanking mountains and the
narrow pass.

3. Statistical methods

3.1. Data sources

Transport network data sets for the United Kingdom were
available from the Integrated Transport Network (ITN)
layer (provided by the Ordnance Survey), downloadable
from the UK EDINA Digimap website (Digimap: http://
www.edina.ac.uk/). This layer consists of the road network,
road routing information and other transport information.
Street data sets and their statistical information within
the city for Dundee were obtained from the Digimap
source and imported into GIS (Arcview Version 9.3;
www.esri.com) while then the ITN layers were converted
to GIS-shapefile format. Dundee City Council and the
National Library of Scotland also provided the histori-
cal data for previous street networks in Dundee, and all
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the historical maps were digitised for import into ArcGIS.
The National Iranian Cartographic Centre (2005) pro-
vided the GIS-shapefiles for the network data sets of the
city of Khorramabad. In addition, the CAD/GIS master
plan of the city is used so as to obtain the most recent
street networks of city (Ministry of Housing and Urban
Development 2005). The historical maps of Khorramabad
were digitised through GIS, the maps being scanned from
master plan studies of the city (Ministry of Housing and
Urban Development 2005). Google Earth was also used
for capturing appropriate remote-sensing images of two
cities which display the main physical features and act
as a backcloth to the street line analysis. As our analy-
sis will focus on the variation in street-segment lengths
and trends (orientation or azimuth) and street spacing, a
street segment is defined as the distance from one junc-
tion to the next while spacing is defined as the shortest
distance between street centrelines. External constraints
considered here include landscape factors such as coast-
lines (Dundee city) and mountain ranges (Khorramabad)
as such constraints largely define the boundary shape
of each of the case study cities. Digital terrain models
were used to supplement such as those used in Google
Earth.

3.2. Analytical methods

3.2.1. Delineation of city boundaries

There is no definitive agreement on how to define a city
boundary and methods vary depending on the application
(Benguigui, Blumenfeld-Lieberthal, and Czamanski 2006;
Pont and Haupt 2010). Here the boundaries are determined
from aerial imagery (Google Earth and various aerial pho-
tographs) on the basis of changes in land cover and clear
geomorphological features. In the case of Dundee, the estu-
ary shoreline forms a natural boundary to the south and
southeast, and in the north and northwest, there is a very
clear transition from urban to agricultural land use. In the
case of Khorramabad, the agricultural field patterns and
the steep and sharp mountain slopes clearly separate both
cities from their surroundings and allow clear delineation
of boundary polygons.

3.2.2. Directional statistics

The distribution of street orientations is presented using
rose diagrams (Swan and Sandilands 1995; Smith,
Goodchild, and Longley 2009), constructed using the pro-
gram GEOrient (http://www.geoorient.com/). Two sets of
analyses were performed; first, using non-normalised (non-
weighted) data, where short streets and long streets have
equal weight in the rose diagram, and second, using data
normalised (weighted) in proportion to the length of the
shortest street. In this case, more weight is given to longer
streets which are in proportion to their lengths.

3.2.3. Power law size distributions

Power law size distributions are very common in artificial
(man-made) and natural processes and structures, particu-
larly in the heavy tails of many distributions which often
account for the majority of size or volume of the range of
objects in question. The populations of cities, the intensi-
ties of earthquakes, word frequencies in literature and the
frequencies of family names all give rise to power law-like
distributions (e.g. Schroeder 1991; Peitgen, Jurgens, and
Saupe 2004; Newman 2005). Skew distributions in gen-
eral and power-law distributions in particular imply that the
number of small events, processes or objects of a particu-
lar type is large in comparison with the number of large
events, processes or objects of the same type. In general,
systems where competitive processes are at work usually
determine this sorting of small from large which often
accords to evolution where the dynamics of the system is
key. When applied to a cumulative frequency (probability)
distribution, a power law has the form:

P(≥ x) = Cx−D (1)

where P(≥x) is the number of objects with a size larger
than x, C is a constant of proportionality and D is the scal-
ing exponent. In the case of a distribution of street lengths,
P(≥x) is the number of streets with a length larger than
x, C is constant and D is the scaling exponent. To deter-
mine whether data sets follow a power law distribution,
the traditional and standard procedure is simply to plot the
logarithms of the values (x) and their probabilities P(x) as
log (P(x)) = log (C) – D log(x). A straight line on the
log–log plot is then usually regarded as a general indi-
cation of that a power law can account for the variation
(Newman 2005; Jiang 2007, 2009; Clauset, Shalizi, and
Newman 2009) but in reality, however, a straight line is
hardly ever observed over the entire range of the values
or sizes of x; there is normally a cut-off at the smallest
perceivable size (Newman 2005). Thus, the distribution
generally corresponds to a power law only over a certain
range, for example, in its heavy tail or short tail, dependent
on what transform of the distributions is being examined.
To validate size distributions as a power law, the maximum
likelihood method generates the most acceptable statistics
used to compare the power law fit with other candidates
such as the log-normal, exponential and stretched expo-
nential. Details of this estimation procedure are given in
Section 5.

3.2.4. Entropy

Entropy, commonly denoted by the symbol S, is a
fundamental thermodynamic concept. In classical ther-
modynamics, an infinitesimal entropy change, dS, is
defined as:
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dS ≥ δQ

T
(2)

where δQ is the energy (heat) received or absorbed by
the system under consideration, and T is the absolute
(Kelvin) temperature (of the source) at the time when
that energy/heat is received. The equality sign applies to
reversible processes – the inequality sign to irreversible
processes – and the units of δS are given in energy (joules)
over absolute temperature (K), or J K−1. A thermally iso-
lated system cannot receive any heat from an environment,
in which case δQ = 0 and, from Equation (2), dS ≥ 0
which may be regarded as one version of the second law
of thermodynamics. It implies that for any change in such
a system, its entropy either stays the same (a reversible
change) or increases (an irreversible change). In cases
where the system is not isolated, its entropy may decrease
as it imports energy from it surrounding parts. However, the
entropy of the system and its surroundings must increase
if the systems and its surroundings are isolated, hence
self-contained.

As defined above, this traditional variety of entropy
does not have an immediate application to street patterns
in terms of their evolution, at least as we have used it
here but physical entropy also has a basis in probability
theory through statistical mechanics. When related to a
probability, the concept of entropy can be used in analysing
the frequency distribution of streets using the following
expression, known as Shannon–Gibb’s entropy formula,
which gives the entropy for a general probability distri-
bution (Dill and Bromberg 2003; Blundell and Blundell
2006) as

S = −k
∑t

i=1
Pi ln Pi (3)

Where k is a constant that is usually taken as the dimension-
less number 1, when dealing with frequency distributions
(Ben-Naim 2008; Volkenstein 2009). For a power law dis-
tribution of street lengths, t is defined as the number of
classes or bins that contains streets in the frequency dis-
tribution, that is, the number of bins of street lengths with
nonzero probabilities of streets, and Pi is the frequency or
probability of a set of streets belonging to the i-th bin,
that is, the probability of the i-th class or bin (Dill and
Bromberg 2003; Volkenstein 2009). When calculating the
entropy using Equation (3), it is usual to include only those
bins where the probability of finding a street is greater
than zero (thus, each included bin contains at least one
street). Equation (3) is analogous to the Shannon entropy
equation, which lies at the basis of information theory
(Jaynes 1957) and is here applied to frequency distribu-
tions (Wang et al. 2003; Rao et al. 2004; Drissi, Chonavel,
and Boucher 2008; Navarro, Aguila, and Asadi 2010; Chen
2012). By definition, we also have

∑t

i=1
Pi = 1 (4)

where the sum of the probabilities for all the bins is equals
to one. Given that the probabilities are always between
0 and 1 (Equation (4)), and the natural logarithm of num-
bers between 0 and 1 is negative, the minus sign in
Equation (3) ensures that entropy must always be positive.
The probabilities, as applied to streets in a population, are
a measure of the chances of randomly selected streets from
the population of street lengths falling into a particular bin.

The calculated entropy of the population depends on
the shape of the probability distribution. For example, if
the distribution is uniform, that is, all the bins occupied by
streets have the same lengths (heights), so that the prob-
ability of streets belonging to any of the bins is equal,
then the entropy reaches its maximum value (Kondepudi
and Prigogine 1998; Stamps 2004; Nelson 2006; Desurvire
2009; Volkenstein 2009). The entropy of an isolated sys-
tem in a given macrostate where all the probabilities are
equal may be derived from Equation (3) and is given by the
Boltzmann equation, namely:

S = −k ln(1/t) = k ln t (5)

where, again, t is the number of nonzero bins in the
probability or frequency distribution.

A city, however, is not and cannot in any sense be
treated as an isolated system since it always exchanges
materials, energy, information and people with its sur-
roundings. A street network as a part of a developing city
is thus not isolated (it may be either closed or open). It thus
follows that the bins or classes (microstates in statistical
mechanics) for a street network are not equally probable.
It is of interest to examine how this measure changes as a
city develops, for it is a signature of how evenly spread are
the distribution of street lengths and this reflects the extent
to which the city is evolving and changing.

4. Street patterns and size distribution

4.1. Dundee

The trends for the whole city (with 9616 street segments,
Figure 1a) and those within sub-regions along its estuarine
shoreline (6004 street-segments, Figure 3) were analysed
and presented as rose diagrams, using both normalised
and non-normalised data. The sub-regions (Figure 3)
were chosen according to three criteria, namely: (1) The
number of streets should be similar in all the subareas
(800 < N < 900); (2) All the subareas should be of a sim-
ilar size; and (3) The subsets should reflect the variation in
alignment of the shoreline.

From Figure 1, it is evident that there are two main
street trends in Dundee: one aligned roughly northsouth,
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1 2 3 4 5 6 7

Figure 3. Variations in street trend for subareas of Dundee that lie along its estuarine shoreline.

Notes: Each rose (1–7) on the image presents the trend within a chosen part of the city with a 10 degree interval. The main, roughly
orthogonal, street trends are coast-parallel and coast-perpendicular and follow variations in the trend of the coastline. On the image, the
data are non-weighted, but below the image the data are weighted (modified from Mohajeri and Gudmundsson 2012).

the other roughly eastwest. These are broadly shoreline-
perpendicular and coast-parallel respectively. The extent
to which the shore-parallel trends closely follow variation
in shoreline direction is strikingly evident from Figure 3.
It is notable that, progressing along the shoreline from
west to east, the northerly trending streets remain orthogo-
nal and thus become north-northwest trending towards the
eastern part of the city. Greater variability in street direc-
tion at the eastern and, especially, at the western margins
of the city are partly attributable to many streets being
roughly perpendicular to the curved landward boundary of
the city at these localities. The change in trend towards
the city centre is presumably because this is the oldest
part, where the city originated and where the segments
tend to be more irregular (see the non-weighted rose 3 in
Figure 3). Coast-parallel street segments tend to be longer
than the coast-perpendicular segments. This is presumably
because the city originated with the first harbour on the
estuary shore and subsequently grew preferentially along
this shoreline.

Cumulative distributions (Equation (1); Figure 4a) are
used to explore the power law properties of street lengths.
Log–log plots (Figure 4b and c) suggest that the street
length distributions are consistent with composite power
laws that have different scaling exponents for different
street-length ranges. From purely visual inspection, a clear
break in straight-line slope occurs at a street length of
around 140 ± 20 m, at which point the scaling exponent

changes from 0.917 to 2.582. This implies the existence of
two distinct street populations. That composed of streets
with lengths from 3 m to 140 m primarily consists of
local streets, including private lanes and alleys and cul-de-
sacs (Headicar 2009). The other population (streets with
lengths from 140 m to 2248 m) is comprised primarily of
local roads and collectors (that are commonly wider than
local roads and feed the traffic from local streets to arterial
roads).

4.2. Khorramabad

The analysis of 8481 streets for Khorramabad again indi-
cates the existence of two dominant trends (Figure 2b),
although these are much weaker than in the previous case
of Dundee. The greater variation in street orientation for
Khorramabad is partly due to the broadly crescent-shaped
city boundary, which is more directly constrained by land-
scape topography. To further explore this, the city was
divided into five similarly sized (average N = 1692) sub-
areas (Figure 5) based on different time periods of the
city growth. Weighted and non-weighted rose diagrams for
these subareas exhibit more clearly bi-directional orienta-
tions that, for Dundee, are clearly aligned with constraining
external boundary (the coastline).

Results for all the street lengths are shown in
Figure 6, which provides cumulative plots of all the
streets lengths exceeding a given length against the lengths
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Figure 4. Power law frequency plot of all street segments (9616) measured in Dundee. (a) Ordinary cumulative length distribution (b)
Single-line log–log fit. (c) Double-line log–log fit. The different scaling exponents indicate different street populations.
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Figure 5. The city of Khorramabad (right): divided into five subareas/subsets, each with a subpopulation of streets (numbered 1–5).

Notes: The roughly easterly dominating main trend is perpendicular to the curved boundaries of the crescent-shaped city. The main,
roughly northerly, subordinate trend is parallel with the curved axis of the city. The figure also shows the street spacing (left) along two
roughly orthogonal profiles or transverses (a and b) in subarea/subpopulation 1–5 (modified from Mohajeri 2012).

of streets. When the data are shown on log–log plots
(Figure 6b and c), an abrupt break in slope occurs at about
the same street length as in Dundee (120 ± 20 m). The
first population is composed of primarily local streets with

lengths from 3 m to 120 ± 20 m, and the second of collector
and minor arterial streets as long as 1192 m.

The variation in spacing between streets in
Khorramabad was analysed to see what effects, if
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Figure 6. Power law frequency plot of all street segments (8481) measured in Khorramabad. (a) Ordinary cumulative length distribution.
(b) Single-line log–log fit. (c) Double-line log–log fit. The different scaling exponents indicate different street populations.

any, its very clear landscape constraints have on street
density and functionality. Street density is the reciprocal
of spacing and is defined as the number of streets per unit
length of a transverse roughly perpendicular to the mean
trend of the streets. Spacing is defined as the shortest
distance between the central lines (or middle parts) of
adjacent streets. Variation in the street spacing or density
indicates how the capacity for traffic transport may change
within a city (Mohajeri 2012). For example, a narrow
valley may form a bottleneck where the street spacing
would be expected to decrease or the density to increase,
to maintain uniform capacity for traffic flow along the
city (Figure 5-right). In each subarea (Figure 5-left), the
spacing along two roughly orthogonal lines or transverses
was measured; one, marked by a, is parallel with the
dominating (easterly) main trend of streets; the other,
b, is parallel with the subordinate main trend. The two
transverses are roughly perpendicular to the trends of the
streets for which spacing are determined.

Several points emerge from the results in Table 1. First,
the street spacing follows approximately normal distribu-
tions. The standard deviations vary but are much smaller
for the easterly streets (i.e. those crossing lines b). Second,
the spacing is also, on average, much less for the streets
crossing lines b than for those crossing lines a as revealed
in Table 1. The mean spacing in the subareas or sub-
populations for the streets crossing lines b varies from
27.82 m to 60.84 m, with an average mean spacing value

of about 50.71 m. By contrast, the mean spacing for the
streets crossing lines a in the same subareas varies from
52.13 m to 123.26 m, with an average mean spacing of
about 106.15 m. Thus, the mean spacing of the streets
that cross lines a, and are thus parallel with the axis of
the elongated, crescent city, is roughly twice that of the
streets crossing the lines b. The easterly trending streets,
that is, those crossing lines b, have a much higher density
(much less spacing) than the streets crossing lines a. Third,
the minimum spacing occurs in subarea/subpopulation 3:
shown in bold (Table 1, Figure 5), namely at the narrow-
est part, or the bottleneck, of the city. The low average
street spacing, or high street density, in this subarea is a
further indication that the external landscape influences not
only the overall shape of the city but also its internal street
pattern.

5. Critical testing of power law distributions

Although the practice of attributing good straight line fits
of log–log distributions to the existence of an underlying
power law process is widespread, it is entirely possible that
other distributions may provide a better statistical fit and
more closely represent the underlying generative process.
In short, much of the analysis of power law relationships
is based on visual analysis of the log–log plot rather than
any serious consideration of other possible relations that
also show good visual fits but are very different from the
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Table 1. Number of street-spacing measurements, mean spacing, standard deviations and minimum and maximum spacing in
subareas/subpopulations 1–5, Khorramabad, along transverses/profiles a and b in each subarea (located in Figure 7-right).

Street-segments spacing

Profile
Profile

orientation
Street
trend

Number of
spacing

Mean
spacing (m)

Standard
deviation

Minimum
spacing (m)

Maximum
spacing (m)

a-1 SW–NE NW 15 121.73 71.98 17 323
b-1 SE–NW NE 49 53.92 21.43 22 137
a-2 SW–NE NW 19 123.26 55.41 23 253
b-2 SE–NW NE 45 51.73 11.3 27 89
a-3 W–E N 39 52.13 31.28 13 163
b-3 S–N E 72 27.82 11.49 8 75
a-4 SE–NW NE 12 122.83 66.67 34 205
b-4 SW–NE WNW 34 59.24 15.48 33 99
a-5 SE–NW NE 19 110.79 54.89 38 239
b-5 SW–NE NW 32 60.84 28.98 26 166

simplest power law case. Therefore, following the methods
advocated by Newman (2005) and Clauset, Shalizi, and
Newman (2009), maximum likelihood estimators (MLE)
with goodness of fit tests based on Kolmogorov-Smirnov
statistic and likelihood ratios were used to evaluate the
power law behaviour apparent from visual examination of
the street network data. This method permits estimation
of the scaling exponent (α), and also the lowermost or
minimum value (xmin) down to which the distribution fol-
lows a power law. Following Clauset, Shalizi, and Newman
(2009), a quantity × obeys a continuous power law distri-
bution if it is drawn from a probability density function or
PDF such that:

P(x) = Cx−a (6)

where C is a normalised constant based on the minimum
value or lower-bound of the power law (xmin) and α is the
scaling exponent. Generally, a power law fit to empirical
data does not apply for all ×∈×≥ 0. There must be some
lower bound or minimum value for the power law fit. Often,
a power law fit applies only to data larger than xmin, i.e. to
the tail of the distribution. It follows that a definition of
power law distribution, using normalisation, is:

P(x) = α − 1

xmin

(
x

xmin

)−α

(7)

Using Equation (7), we can estimate α thus:

α = 1 + n

[
n∑

i=1

ln
xi

xmin

]−1

(8)

where xi, i = 1 . . . n are the observed values of × such that
xi ≥ xmin, α is the slope of the line in the power law domain,
n is now the number of data bins used in the calculations
(excluding those with values below xmin), and xmin is the

lower bound for the power law fit to apply. It may be help-
ful to explore the complementary cumulative distribution
function (CDF) of a power law distribution function. The
shape or form of the CDF normally shows less fluctuation
than that of the PDF, in particular in the tail of the distribu-
tion (Newman 2005). The cumulative distribution function
P(x) in relation to the probability distribution Pr is defined
as P(x) = Pr (X ≥ x). For the continuous case, the formula
is (Clauset, Shalizi, and Newman 2009):

P(x) =
∫ ∞

x
P(x′)dx′ =

(
x

xmin

)−α+1

(9)

where xi, i = 1 . . . n are the observed values of × such
that xi ≥ xmin. In the present analysis, xmin is chosen so
as to make the cumulative distributions of the measured
data and the best-fit power law as similar for xi ≥ xmin.
There are a variety of methods for quantifying the dis-
tance between two distribution functions, but for non-
normally distributed data, the most common method is the
Kolmogorov-Smirnov or KS statistic, which is the maxi-
mum distance between a distribution function (CDF) of the
data and the fitted model. This is defined as:

� = maxx≥x min |S(x) − P(x)| (10)

Here, S(x) is the CDF of the data for the observations with
values larger than or equal to xmin, and P(x) is the CDF for
the power law that best fits the data in the region ×∈≥ xmin.
Our estimate of xmin is then the value of xmin that minimises
� in Equation (10).

When xmin and α have been calculated, we can find
the goodness-of-fit between the data and the power law.
A goodness-of-fit test generates a P-value that quantifies
the plausibility of the hypothesis that the data fit a power
law. It should be noted that a large P-value does not neces-
sarily mean that a power law is the best model for the data.
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10 N. Mohajeri et al.

First, there may be other models or distributions that match
(fit) the data equally well or better over the observed range
of x. Second, for a small number of data, it is very diffi-
cult to rule out a power law model; even if the calculated
P-value is large, the power law fit may be spurious.

To explore these points further, power law models for
the street network data are compared with alternative mod-
els using a likelihood ratio test. For each alternative model
(fit), if the calculated likelihood ratio is significantly differ-
ent from zero, then its sign indicates whether the alternative
is favoured over the power law model. To do so, we cal-
culate the logarithm of the likelihood ratio (R), which has
a positive and negative sign depending on which distribu-
tion is better, or zero if the model fits are equally good.
More specifically, positive values of the log-likelihood ratio
indicate that the power law model is favoured over the alter-
native. However, the sign of the R alone is not sufficient to
determine which model provides the better fit because, like
other quantities, the ratio is subject to statistical fluctua-
tions. To make an objective judgement as to whether the
observed value of R is sufficiently far from zero, we need
to know the size of the expected statistical fluctuations, that
is, the standard deviation σ of R. To estimate σ , we use a
method used by Clauset, Shalizi, and Newman (2009) that
gives a P-value that tells us whether the observed sign of R
is statistically significant.

Using the maximum likelihood method for testing the
appropriateness of power law models can, however, be
problematic (Newman 2005; Clauset, Shalizi, and Newman
2009). For example, it is very difficult to decide between
log-normal and the power law models because, for realistic
ranges of x, the two models are very similar. It is therefore
unlikely that any test would be able to discriminate between
these models unless the data set is very large. Also, in many
cases, the results from comparing power laws with other
distributions based on calculations of P-value and likeli-
hood ratio tests does not help us to decide which model fits
better with the data.

When a decision cannot be made using quantitative
approach, the final decision as to which model best fits the
data may have to be based on our intuition. The value of
such a judgement about the best-fitting model for a data dis-
tribution can be greatly improved by considering the likely
physical basis or theoretical factors that generate, or con-
tribute to the generation of, the data. More specifically, we
should consider physical, that is, the non-statistical argu-
ments that might favour one model fit over the alternative
models. Thus, in many cases the decision as to whether
to use a power law or an alternative model does not only
depend on how well the models fit the data but also on
the theoretical framework and the scientific aims of the
study (Clauset, Shalizi, and Newman 2009; Huges and
Hase 2010; Berendsen 2011).

Based on these considerations, maximum likelihood
estimators were calculated for the power law fits to the real-
data distributions. The goodness-of-fit was also calculated

Table 2. Tests of power law behaviour in the data sets.

Tests of power law behaviour in street data sets

City Dundee, 2007
Khorramabad,

2006

n 9616 8481
α 3.27 ± 0.09 3.81 ± 0.42
ntail 961 ± 241 2751 ± 1785
xmin 165 ± 26 116 ± 33

Power law P 0.34 0.00
Log normal LR −0.402 −32.481

P 0.29 0.00
Exponential LR 90.124 −21.876

P 0.99 0.07
Stretched

exponential
LR −0.359 −27.479

P 0.36 0.00

Notes: Number of street segments for each city (n), scaling exponent
based on MLE (α) and the standard error of α, the number of observation
in the power law region (range) (ntail) and standard error of ntail, lower
bound of power law (xmin) at which the power law no longer applies and
standard error of xmin, power law fits and the corresponding P-values, a
P-value for the fit to the power law model and likelihood ratios for the
alternative models (fits). Positive values of the log-likelihood ratios indi-
cate that the power law model is favoured over the alternative models if
the P-value <0.1. However, if the P-value is larger than 0.1, the sign is
not reliable indicator of which model is the better fit to the data.

to estimate the lower cut-off (xmin) for the scaling region
and the KS statistic (which computes a P-value for the esti-
mated power law fit to the data). The uncertainty/error in
the estimated parameters for the power law fit was also
evaluated. However, to compute the log-likelihood ratios
for two competing models (fits), freely available R routines
were used (http://tuvalu.santafe.edu/~aaronc/powerlaws/).
The results are summarised in Table 2. The P-values for the
power laws indicate that the Dundee data set fits very well
with a power law. However, the likelihood-ratio tests have
P-values so large (0.29, 0.99, 036) that they cannot be used
to decide which of the various alternative models best fits
data. In contrast, the data set of Khorramabad has P-value
so small (effectively 0.0) that the power law model can be
ruled out. In the likelihood-ratio test for Khorramabad, the
P-value is small enough for the signs to be reliable; the
results show that any of the other models are plausible.

Even if the alternative distributions (log-normal, expo-
nential and stretched exponentials) may statistically fit
some of the street network data sets better than a power law,
power law fits may still be useful. For example, as shown
in the present analysis, they provide a convenient basis for
distinguishing between street subpopulations that have dif-
ferent functions. This kind of analysis is developed further
with reference to the entropy concepts in the following
section.

6. Geometric evolutions of cities and entropy analysis

We will now explore how the street patterns, as regards
their lengths, can be interpreted with reference to concepts
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drawn from statistical mechanics/information theory, pri-
marily based on entropy measures The focus is on the
evolution of Dundee in the time periods from the sev-
enteenth century to the year 2007 and the evolution of
Khorramabad in the time periods from the 1955 to 2006.

Lengths of street segments were analysed for each time
periods (Figures 7a and 8a). Plots of the cumulative distri-
butions of street lengths (Figures 7b and 8b) for different
time periods provide different curves on the log–log plots
(Figures 7c and 8c). In particular, in Dundee there are

noticeable changes in the approximate straight-line slopes
at about the same street lengths as in Khorramabad, that
is, at 120 ± 20 m (Tables 3 and 4). This indicates differ-
ent street populations (using the same ‘regression-line’ fits
as in Figures 4 and 6 but not shown in Figures 7c and
8c). All the street populations for Dundee are shown in
Table 3, and for Khorramabad is shown in Table 4, where
‘breaks’ in slope, marking the change from one population
to another, occur at lengths from 100 m to 140 m. Thus,
the short-street populations range in length from 3 m to
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Figure 7. DEMs (Digital Elevation Models) showing the situation of Dundee (a) in the six sampled time periods from before seventeenth
century to 2007, (b) cumulative length distributions of streets in Dundee during time from before seventeenth century to the year 2007 and
(c) log-transformed plots of street number versus street length.
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12 N. Mohajeri et al.

Table 3. Number or frequency, length range, average length, scaling exponent (D), coefficient of determination (R2) and entropy (S)
of the populations and subpopulations during the evolution of the city of Dundee.

Street segments (Dundee)

Year Frequency
Length range

(m)
Average
length

Scaling exponent
(D) R2

Entropy
(S)

1600 70 12–336 92 1.594 0.888 2.245
A – 12–100 52 0.527 0.921 1.741
B – 100–336 153 2.428 0.956 2.114
1776–17 209 9–569 113 1.898 0.814 2.60
A – 9–100 52 0.451 0.931 1.751
B – 100–569 196 3.157 0.913 2.548
1821 376 12–625 117 1.908 0.860 2.613
A – 12–120 65 0.603 0.875 1.875
B – 120–625 228 3.110 0.957 2.608
1846 1360 8–1008 88 2.43 0.939 2.337
A – 8–100 55 0.702 0.868 1.710
B – 100–1008 171 2.995 0.971 2.639
1912–1913 2184 11–1770 130 2.166 0.928 2.862
A – 11–120 70 0.575 0.841 1.883
B – 120–1770 248 2.641 0.963 3.224
2007 9616 3–2248 80 2.262 0.968 2.539
A – 3–140 53 0.917 0.922 1.889
B – 140–2248 254 2.559 0.984 3.268

Note: A and B (in bold) refer to subpopulations of short and long streets, respectively.

Table 4. Number or frequency, length range, average length, scaling exponent (D), coefficient of determination (R2) and entropy (S)
of the populations and subpopulations during the evolution of the city of Khorramabad.

Street segments (Khorramabad)

Year Frequency
Length range

(m)
Average
length

Scaling exponent
(D) R2

Entropy
(S)

1955 468 4−269 60 1.818 0.861 1.967
A – 4−100 43 1.065 0.960 1.601
B – 100−269 160 3.648 0.865 1.799
1965 1671 3−375 54 2.634 0.875 1.846
A – 3−140 47 1.490 0.942 1.684
B – 100−375 197 5.443 0.958 1.859
1975 2927 3−598 50 2.750 0.951 1.809
A – 3−100 39 1.333 0.955 1.517
B – 100−598 154 3.543 0.981 2.163
1989 3932 4−638 55 3.121 0.904 1.911
A – 4−140 46 1.342 0.960 1.719
B – 140−638 195 4.812 0.928 1.952
1997 5535 3−882 62 2.656 0.946 2.020
A – 3−120 47 1.109 0.956 1.711
B – 120−882 176 3.078 0.938 2.157
2006 8481 3−1192 65 2.841 0.963 2.053
A – 3−120 49 1.093 0.942 1.726
B – 120−1192 179 3.222 0.973 2.227

Note: A and B (in bold) refer to subpopulations of short and long streets, respectively.

120 ± 20 m for both cities, whereas the long-street seg-
ments range from 120 ± 20 m to 2248 m for Dundee and to
1192 m for Khorramabad. Using these results, the scaling
exponents and the length ranges of the street populations
from Dundee and Khorramabad can be compared with their
entropies.

The length distribution of streets is a measure of the
associated entropy. This follows because entropy in the
probabilistic sense is an indication of the spread of any
kind of frequency distribution (Dill and Bromberg 2003;
Volkenstein 2009). Equation (3) can be used to calculate
the entropies associated with the various street populations,
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Figure 9. Entropy versus the length range and average length of streets in Dundee and Khorramabad. (a and b) Correlations for the
short (populations marked by ‘A’ in Table 3) and long (tail) populations (those marked by ‘A’ in Table 3). (c and d) Correlations for the
short populations (marked by ‘A’ in Table 4) and long (tail) populations (marked by ‘B’ in Table 4). Only the subpopulations shown in
Tables 3 and 4 are plotted since the whole populations do not fit with straight-line plots.

as well as the scaling exponents of the power laws, D, as in
Equation (1).

Entropies, scaling exponents, length ranges and average
lengths of street populations in Dundee and Khorramabad
are compared in Tables 3 and 4. Considering first the rela-
tions among the populations (A, B) from Tables 3 and 4, the
results are plotted in Figure 9. There is clearly a strong pos-
itive correlation between the entropies and (a) the length
ranges and (b) the average lengths of the streets in these
populations as a function of time, that is, during the evo-
lution of the city. It is clear that short streets are of less
importance in these relations than the long streets because
the maximum (and average) lengths of the short streets
do not change much with the expansion of the city. Thus,
the focus is on the long streets (steep-slope or that tail-
part) populations, since these are likely to change with the
growth of the street network. Clearly, all the three param-
eters (entropy, length range and average length) increase
as the street network expands during the growth of these
cities. This implies that as the city grows, the tail popula-
tions increase their average and maximum lengths and thus
become more dispersed or spread, thereby increasing their
entropies.

The maximum likelihood method is again used to test
whether the data for each of the city-evolution periods are
consistent with power laws, using Dundee as an example.
Results (see the P-values in Table 5) indicate that most

of the Dundee-evolution data sets are indeed consistent
with power law models, the exception being the data for
1776–17. However, P-values for the alternative models are
so large that we cannot decide which, if any, of the alter-
native models are statistically better. This also applies to
the other time periods, with the exceptions of 1821 and
1912, where the P-values are small enough for the signs to
be reliable such that log-normal, exponential and stretched
exponential models also provide plausible fits as shown in
Table 5.

7. Discussion and conclusion

Before the industrial revolution (which began in Scotland
in the early nineteenth century), the centre of Dundee has
preserved most of its character from medieval times The
street patterns particularly in the southern and eastern parts
still follow an irregular layout, similar to the old medieval
town. Thus, the city grew until that time in a sort of nat-
ural way through ‘bottom-up’, individualistic rather than
‘top-down’ institutionalised collective processes. However,
many of the medieval local streets were demolished in
the late nineteenth century for extension of the Victorian
streetscape (Ferguson 2005; Watson 2006). By contrast, the
city of Khorramabad is an example of a rapidly expanding
city, with most of its streets being planned by the cen-
tral government and in a ‘top-down’ manner (Ministry of
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14 N. Mohajeri et al.

Table 5. Tests of power law behaviour of Dundee-evolution data sets.

Tests of power law behaviour in street data sets

Dundee evolution Before 1700 1776-17 1821 1846 1912 2007

n 70 209 376 1360 2184 9616
α 3.46 ± 0.39 2.79 ± 0.42 2.71 ± 0.43 3.33 ± 0.14 2.93 ± 0.27 3.27 ± 0.09
ntail 32 ± 11 93 ± 30 185 ± 71 440 ± 110 615 ± 358 961 ± 241
xmin 101 ± 23 108 ± 37 103 ± 50 100 ± 15 164 ± 57 165 ± 26
Power law P 0.99 0.00 0.40 0.32 0.21 0.34
Log normal LR 0.000 −3.388 −8.461 −1.198 −4.181 −0.402

P 0.57 0.22 0.00 0.17 0.04 0.29
Exponential LR 3.048 −5.044 −9.436 19.214 24.124 90.124

P 0.89 0.11 0.00 0.98 0.96 0.99
Stretched exponential LR 0.048 −5.080 −9.520 −1.279 −4.169 −0.359

P 0.63 0.11 0.00 0.17 0.04 0.36

Notes: Number of street segments for each time period (n), scaling exponent based on MLE (α) and standard error of α, the number of observation
in the power law region (range) (ntail) and standard error of ntail, lower bound of power law (xmin) at which the power law no longer applies and
standard error of xmin, power law models (fits) and the corresponding P-values, a P-value for the fit to the power law model and likelihood ratios for
the alternative models.

Housing and Urban Development 2005; Mohajeri 2012).
As the growth of cities is a complex process, affected by
many parameters, it is clear that Dundee and Khorramabad
have evolved through different processes. However, even if
the growth processes have been different, with initial street
patterns quite different, the contemporary street patterns
show many similarities (Levinson and Huang 2012).

The results presented here show, first, that landscape
constraints can have large effects on the general city bound-
ary shape and, second, that boundary shape, in turn, affects

the street patterns. In the case of Dundee, street lengths are
to a large degree controlled by their orientation in rela-
tion to the estuary shoreline that bounds the city to the
south (Figures 3 and 5). Coast-parallel streets are longer
and most streets are either perpendicular or parallel to the
shore. In Khorramabad, the mountain slopes continue to
constrain city shape as well as trend and length evolution of
streets (Figure 5). These constraints are reflected not only
in the trends of the streets but also in the minimum street
spacing being in the narrowest part of the city (Table 1).
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Figure 10. The entropy of the whole street-length populations (a, b) as a function of time has remained essentially constant during the
sampled time periods. By contrast, the entropy of the long (tail) length populations has increased during the sampled time periods (c, d).
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Most of the street populations show power law length
distributions with the obvious point there are many more
short streets than long ones. The power law size distri-
butions of street networks, or city size, indicate that a
city system self-organises itself as a hierarchical structure
at different scales, from the smallest to the largest (Zipf
1949; Simon 1955; Salingaros 2005; Batty 2006, 2008;
Pumain 2006; Jiang 2007; Levinson and Huang 2012).
On log–log plots, the street populations of both cities
show breaks in the straight-line slopes (yielding different
scaling exponents D) at roughly the same street lengths,
namely at 120 ± 20 m. The shorter streets are mainly local
streets whereas the longer ones are collectors and arterials
(Figures 7 and 8).

A long power law tail (subpopulations B in Tables 3
and 4) normally implies a more dispersed (spread) dis-
tribution and thus a high entropy (in comparison with
subpopulations A). To test this implication, the entropies
calculated for the Dundee and Khorramabad street sub-
populations were plotted against their length ranges and
average lengths, considering the sampled time periods
(Figure 9). The results show a linear correlation between
the calculated entropies and the length ranges and aver-
age lengths of these subpopulations, implying that the
entropy of a street network increases over time with
increase in its maximum and average street lengths. The
results in Figure 10 suggest that the entropy of nei-
ther city changes significantly over the six sampled time
periods. However, the entropies of the long (tail) popu-
lations have a high correlation and clearly increase with
time.

In conclusion, the two case studies, the cities of Dundee
and Khorramabad, clearly show how their shapes and asso-
ciated street patterns are constrained by the surrounding
landscape. The entropy analysis method presented here
is used to quantify the variation in street trends and
lengths in relation to landscape constraints within cities
and between cities as well as city evolutions. We believe
that this method, as demonstrated by the results presented
here, offers great possibilities for quantifying not only
other properties of street patterns such as width, density
and connectivity, but also for other linear spatial struc-
tures in cities, obviously other kinds of networks that
can be coupled to street patterns but also clusters of
related locations that are linked through more abstract
relations.
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