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Crowd and environmental management during mass 
gatherings
Anders Johansson, Michael Batty, Konrad Hayashi, Osama Al Bar, David Marcozzi, Ziad A Memish

Crowds are a feature of large cities, occurring not only at mass gatherings but also at routine events such as the 
journey to work. To address extreme crowding, various computer models for crowd movement have been developed 
in the past decade, and we review these and show how they can be used to identify health and safety issues. State-of-
the-art models that simulate the spread of epidemics operate on a population level, but the collection of fine-scale data 
might enable the development of models for epidemics that operate on a microscopic scale, similar to models for 
crowd movement. We provide an example of such simulations, showing how an individual-based crowd model can 
mirror aggregate susceptible–infected–recovered models that have been the main models for epidemics so far.

Introduction
More than 50% of the world’s population were living in 
cities in 2008.1 By the end of this century, most of the 
population will be living in some type of city, although 
some of the population might still be living in rural areas 
mostly for agrarian purposes. This increasing 
urbanisation has been accompanied by a rise in larger 
cities with increasing population densities because the 
large-scale economies generated by urban agglomeration 
lead to increased prosperity. Big cities generate wealth by 
attracting skilled migrants.

Besides the strain on urban living and infrastructure, 
as the planet becomes increasingly crowded, cities in 
particular are becoming places of frequent and large 
mass gatherings (MGs). At the local and regional scales, 
large movements of populations during commutes from 
home to work and other routine travel are resulting in 
massive congestion on road systems and public transport. 
Local entertainment events generate extreme crowding 
in small spaces such as sports arenas, festivals, and other 
popular entertainment sites. This extreme crowding is 
particularly difficult during emergency evacuations.2

Bringing people together has many positive social and 
economic benefits, but also several negative outcomes. 
When the density of people becomes too high, crime, 
incidence of injury and illness, severe traffic delays, and 
pollution also increase, often more than proportionately 
through the interaction of populations.3,4 Densely 
populated areas are also ideal for the development and 
spread of some respiratory epidemics. Frequent 
interactions between people whose physical contact 
increases non-linearly with the density of individuals in 
any particular place results in transmission of contagious 
diseases to a large population in the shortest time.

During any MG, environmental and public health 
planning includes protecting the health and wellbeing of 
participants, staff, and spectators from infections, other 
illnesses, and injuries related to improper management 
of food, water, waste, land, and traffic. Health authorities 
need to consider basic human needs, including potable 

water, sufficient public toilets, adequate refrigeration for 
perishable foodstuffs, recognised and approved suppliers 
of bulk foodstuffs to the food providers at the site, 
sufficient capabilities for the disposal of liquid and solid 
waste, appropriate storage and removal of liquid waste, 
and control of rodents and insects that affect health.

Some environments for MGs are so crowded that the 
risk of a disaster is ever present.5,6 An example of such a 
crowded environ ment is the Hajj, the Muslim pilgrimage 
to Mecca,7,8 which is an annual event that takes place in 
the sacred areas of Mecca, Mina, Muzdaliffah, and Arafat, 
in Saudi Arabia (figure 1). At the Hajj, accommodation 
ranges from the most basic to the most sophisticated, but 
most pilgrims have to share public facilities and live in 
semipermanent tents. Inadequate storage, cooking, or 
transportation, lack of refrigeration, and lack of proper 
food handling can contribute to the pilgrim’s risk of 
disease. The Hajj attracts about 3 million pilgrims during 
1 week. It is very crowded, with millions of pilgrims 
undertaking their religious duties within strict constraints 
in terms of space and time; this rigour and strictness 
have led to a series of large crowd disasters over several 
years,9 thus putting pressure on the authorities. In the 
past few years, efforts have increased to solve this 
difficulty by scientific means, use of crowd simulation 
models,9,10–12 assessment of the best ways of grouping and 
scheduling pilgrims,13 crowd management and control,14 
luggage management, video monitoring,5,10,15 and changes 
in the construction of the transport system for the 
event.16

The range of logistical challenges for MGs is large and 
includes the management of solid waste. During the Hajj 
in 2010, 25 612 tonnes of solid waste had to be gathered, 
transported, and placed underground by 6446 cleaning 
staff, 424 inspectors, and 630 drivers. Density of pilgrims 
can prohibit the use of refuse removal vehicles. Use of 
covered refuse containers is essential for food waste, 
particularly for outdoor settings in summer. As a result, 
some method of emptying containers to prevent overflow 
must be considered—possibly a central, properly 
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prepared holding area, until bulk removal after the event. 
Another consideration during the Hajj was waste from 
the slaughterhouse that provided animals for religious 
ritual sacrifices (700 000 goats per Hajj season).

A different and contained event based on a different 
form of passion is the Notting Hill Carnival, held every 
year in central London, UK, that consists of a parade and a 
series of related musical entertainments (figure 2). The 
carnival first began as an informal street procession 
between 1959 and 1964 as a way of bringing the local 
community together after a series of race riots in the area 
in the late 1950s. Notting Hill then was the first area in the 
UK to have such riots in modern times and the 
predominantly West Indian community at the time decided 
to celebrate their culture, diversity, and potential to 
integrate through the carnival. The carnival now attracts 
more than 1 million visitors over the 2 days of public 
holiday in late summer compared with tens of thousands 
in its early days, and is now a major event for crowd control 
and public order, involving the use of important resources 
including health care and street management. The event is 
not marred by the scale of disaster associated with the Hajj, 
but crowding leads to increasing numbers of accidents, 
severe delays in treatment, and many public order offences 
every year. The carnival has been under much scrutiny by 
the authorities since it was marred by two murders in 
2000. Proposals for its rerouting were subsequently 

generated with various scientific simulations that focused 
on the way crowds interacted and dispersed under different 
conditions of movement and congestion.17–19

Helbing and colleagues20 catalogued key disasters 
relating to crowds during the previous century until 2003. 
The results of their report show the need for detailed study 
of crowd behaviour not only under normal circum stances, 
but also in situations in which fire or related hazards sweep 
through small spaces, particularly in enclosures such as 
nightclubs and stadiums where exits and entrances are 
obstructed. We will explain how various models of 
crowding are developed and how these can be adapted to 
deal with other features of MGs in cities, particularly the 
transmission of infectious diseases that might lead to 
epidemics.

Crowd modelling
Crowd research has been going on since at least the 
1890s when Gustave Le Bon21 studied the psychology of 
crowds by observing how they formed. Crowd behaviour 
is generic and Isaac Newton generalised its dynamics 
when referring to the “madness of crowds” during the 
financial crisis of the South Sea Bubble in the early 
18th century.22 However, about 40 years ago, quantitative 
methods started to be used for crowd research, based 
on experiments under controlled conditions, to measure 
the effect of architectural configurations in buildings 
and streets on the flow of people,23 and study the video 
recordings of crowds.24 However during the past 
20 years, more advanced quantitative techniques have 
become increasingly popular because of advances and 
reduced costs of computation. New methods for data 
capture implement fine spatial scales such as those 
used in global positioning system (GPS) technologies. 
These techniques include the simulation of pedestrian 
flows,18,20 automated computer vision,25 and new 
methods for modelling navigation and route finding.26 
Many methods for modelling and simulating pedestrian 
crowds were proposed, such as agent-based,27,28 social 
force,20,29 cellular automata,30–32 fluid dynamic,33–35 and 
queuing models,36,37 and those based on least effort38 and 
simple heuristics.39

Studies of pedestrian crowd dynamics have focused on 
different scales—from the microscopic, dealing with 
individual pedestrians, to the macroscopic, dealing with 
the characteristics of the crowd. These methods have 
shown several self-organising principles about the patterns 
of crowd phenomena; corresponding patterns have been 
noted in real crowds.5,40,41 These included macroscopic 
crowd patterns that result from local interactions of 
multitudes of pedestrians at the micro scopic level. 
Examples of such phenomena are presented in panel 1.

In attempts to manage crowded places, different, 
sometimes conflicting, objectives come into play—eg, 
the general idea behind a MG is to bring people together, 
but the aim of crowd managers is to keep people separated 
(both in space and time). This fundamental paradox in 

Figure 1: The Hajj
(A) Pilgrim crowds at the Jamarat bridge. (B) Overcrowding preventing the access of an ambulance.
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Figure 2: Notting Hill Carnival
(A) Float passing though crowds in the parade. (B) An ambulance passing through the parade and crowds.
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crowd management is one that needs to be resolved in a 
way in which optimum flows are maintained and the 
crowds react appropriately to the constraints imposed on 
their location and movement.

Agent-based models, a new class of simulation models, 
have been developed and encode various principles of 
flow and movement and key features of pedestrian 
dynamics (panel 1). Different principles of flocking and 
dispersion can be built into the algorithms according to 
which pedestrians move in confined spaces, whereas 
various issues such as congestion can be embedded into 
agent-based models. In particular, the idea of a default 
model of movement based on the random walk is often 
the starting point.17 Various methods have been widely 
used that enable entities or people to swarm in the 
process of learning about their local environments.42

The complexity of these kinds of agent-based models 
means that they require good visualisation. For example, 
in the Notting Hill model,18 the swarm behaviour of 
people enables them to learn about the street pattern and 
find the shortest routes, which are crucial for entrance 
and exit (figure 3).

These kinds of simulations are also supported by other 
forms of visual analyses relating to crowding and 
movement that can be used to identify points of 
congestion and overcrowding and are thus key diagnostic 
factors in the use of the models to proactively simulate 
crowd management policies.

Much of the data to validate these models now come 
from various types of remote sensing. Aerial and 
oblique photography, as shown in figure 1 and figure 2, is 
still important, but detailed video recording like that 
used at the Hajj and remote capture of movements 

from fixed-laser scanning devices, closed circuit 
television, and fixed GPS monitors are increasingly 
being used. Increasingly, records of local movements 
from personal devices are providing datasets that can 
be used as samples of movement. This method is 
fraught with difficulties because of privacy issues. 
However, great progress is being made in the capture of 
such data remotely either through GPS or from websites 
that provide automatic archiving, when movements are 
based on vehicular traffic.

Many of these methods are directly useful for crowd 
management. In both the Notting Hill and Hajj 
models,5,15,18 direct use of the simulations have been used 
to improve surveillance of critical congestion points and 
suggest proposals for physical changes to the routes of 
the walkers and the actual transport infrastructure by 
which visitors travel to and around these festivals. For 
example, for the Notting Hill Carnival, an agent-based 
pedestrian model was used to simulate and assess some 
alternative routes, and one of the simulated routes was 
chosen as the actual route for the carnival.18 Also for the 
Hajj, several important improvements have been imple-
mented, informed by the results from studies of 
crowds.5,9–16 A multidirectional street system was replaced 
by a one-way system in 2007, giving higher throughput 
and smoother flow than for any previous Hajj.5,13 Further, 
groups of pilgrims are spread out in time and space by 
use of optimised schedules13 and the compliance with 
these schedules is monitored in real time with video 
analyses of real crowd movement.10,15

Spread of diseases
In crowded places, fear of being crushed is not the only 
concern. Another worry is the transmission of disease.43,44 
Even though epidemiological processes are closely 
related to pedestrian crowding and modes of transport, 
the timescales are typically longer and the spatial extents 
are larger. For these reasons, epidemiological models 
typically operate on a population (macroscopic) level 
rather than on an individual (microscopic) level. The 
advantage of working at a macroscopic level is that the 
scale of the problem does not become a restricting factor. 
Disadvantages are that the interventions that can prevent 
the spread of disease—eg, immunisation, screening, 
quarantine, and travel restrictions for infected indi-
viduals—typically operate on a microscopic level.

Moreover, macroscopic models are typically based on 
the assumption that populations are in equilibrium, 
homogeneous, and well mixed, which is not true for real 
populations. Mobility and interaction patterns in real 
populations, shown in the way that cities are organised, 
tend to be highly skewed in terms of distribution, similar 
to power laws rather than normal Gaussian distribution. 
This skewing typically means that distri butions of the 
population contain many clusters, some large and many 
very small clusters. Diseases will spread faster in the 
largest clusters but are restricted by the cluster size, 

Panel 1: Self-organising principles in crowds

•	 Lane	formation:40 bidirectional pedestrian movement in 
corridors, resulting in a separation of walking directions 
into lanes as a result of the simple interaction heuristic—
ie, step aside if you are approaching someone walking 
towards you, otherwise continue walking in the current 
direction

•	 Oscillations	at	bottlenecks:40 bidirectional pedestrian flow 
within a narrow bottleneck, such as a doorway in the 
middle, results in oscillations of groups passing through 
the bottleneck in opposite directions

•	 Intermittency:41 unidirectional pedestrian flow through a 
narrow bottleneck is not smooth, but rather intermittent, 
with periods of total blockage and bursts in the outflow of 
small groups of people through the bottleneck

•	 Stop-and-go	waves:5 when the crowd density is high, 
smooth unidirectional flow breaks down into dynamic 
stop-and-go waves

•	 Crowd	turbulence:5 for very high crowd densities, 
pedestrians are involuntarily moved around by the crowd 
in unpredictable directions and with varying force
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which has important effects on the spread of an 
epidemic.45,46 For example, Simões47 in modelling the 
spread of mumps in Portugal during the 1997–98 epi demic 
showed how network clusters (strongly interconnected 
parts of the network) of populations at all scales were 
important in determining the spread of disease.

On the basis of all these reasons, we propose a shift in 
epidemiological modelling from the more top–down 
macroscopic level to a microscopic bottom–up level. Some 
attempts have been made to move epidemiological models 
to a microscopic level, by running computer simulations 
of the spread of computer viruses in scale-free networks 
such as the internet,48 or by use of the international airline 
transportation network with census population data to 
simulate the spread of disease.49–51 We propose to delve 
further at the microscopic level and make use of actual 
trajectories of individuals obtained through techniques 
such as GPS or mobile-phone tracking,52 and begin 
tracking how individuals in confined spaces enable the 
spread of disease through their proximity.

Many different models for the spread of epidemics 
exist, but one of the simplest and most well known 
is susceptible–infected–recovered, first proposed by 
Kermack and McKendrick,53 which divides the population 
into three groups—people who are susceptible to the 
disease (S), those who are then infected (I), and people 
who have recovered (R), and, in proportional terms, we 
have S + I + R = 1. The rate of transition from state S to I is 
determined by β=0·15, and the rate of transition from 
state I to R is determined by γ=0·0032, giving us the 
system of ordinary differential equations, where dS/dt, 
dI/dt, and dR/dt are time derivatives of S, I, and R, 
respectively, 

Rather than modelling a perfectly mixed homogeneous 
population with these differential equations, we now 
construct the same type of disease-spreading model 
from a microscopic perspective. In this microscopic 
model, N individuals can be in one of the three states S, 
I, or R, but individuals now have a spatial location that 
is changing with time.54 The recovery rate is still 
modelled with parameter γ, but the rate of passing on 
the infection is now related to the proximity between 
two individuals. If an individual in state I is within a 
10 m radius of another individual in state S, the 
probability of passing on the infection is β. The final 
components in such a model are space of interaction 
and mobility patterns. To test this model for an entirely 
hypothetical epidemic, we chose the centre of London, 
and the movement trajectories of individuals in the 

model have been obtained from couriers moving in 
central London who were tracked with GPS devices 
(figure 4; webvideo).55 By measuring the proportion of 
individuals in states S, I, and R as functions of the 
simulated time, we obtained a result similar to that 
obtained with the Kermack and McKendrick model, 
indicating that our microscopic approach has dynamics 
that are similar to those of the original model. Such a 
microscopic model can be used to study how different 
interventions on the individual level exert their effects at 
the macroscopic level. For example, the system-level 
difference in immunisation of 10% of the population 
can be compared randomly with immunisation of 10% 
of the population travelling the longest distances. We 
might also immunise those whose travel behaviour 
places them in the largest clusters in terms of home, 
workplace, or even shopping centres that they visit, thus 
tailoring the intervention policy to produce the most 
efficient and cost-effective immunisation possible. Such 
strategies for inoculation of children and other 
susceptible groups against mumps are assessed in a 
similar model by Simões.47
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Figure 3: Visual agent-based modelling of crowds at the Notting Hill Carnival
(A) Flow density of the crowds along the streets (red [most dense], yellow, 
green, blue [least dense]). (B) Streets (yellow) closed by the police. (C) Carnival 
route (red and green [section closed ahead]), entry points (blue), and music 
events (yellow), with spectators along and within the parade route (red and 
green). (D) Movement of walkers.



www.thelancet.com/infection   Published online January 16, 2012   DOI:10.1016/S1473-3099(11)70287-0 5

Series

Conclusions
In addition to the advantages of a microscopic epidemic-
spreading model, the disadvantages include the large 
computational burden for city-level or wider spatial 
applications, and fragility of a complex model that has 

many variables. Calibration of such a model with 
empirical data is more difficult because the level of detail 
and quantity of available empirical data vary from area to 
area. Although detailed GPS trajectories of individuals 
can be obtained, detailed information about where, when, 
and whom individuals interact with throughout the day 
is much more difficult to obtain.

For these reasons, we propose a mesoscopic level, as an 
intermediate step, in the development of epidemic 
modelling. This model would essentially run on a 
macroscopic level, but still have all the known characteristics 
and scaling laws (usually expressed as law of sizes in the 
form of a frequency distribution of those sizes) in human 
mobility patterns and interaction (panel 2).

Simões47 model for the spread of mumps in Portugal 
is also built on a modified susceptible–infected–
recovered base (in which a latent stage is introduced for 
individuals who are infected but not yet infectious). 
This model blends microscopic and macroscopic 
elements, in particular taking account of the social 

Figure 4: An individual-based susceptible–infected–recovered epidemics 
model for a hypothetical disease
(A) Snapshot of central London, UK, showing the results of running this 
microscopic model in terms of the spread of infection, susceptibility, and degree 
to which the populations have recovered. The heat map colours correspond to 
the density of people being infected with disease. (B) Results from a 
macroscopic (Kermack and McKendrick53) model. (C) Results from a microscopic 
epidemic-spreading model run by use of global positioning system trajectories 
in central London.
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Panel 2: Characteristics of human mobility patterns and 
interaction

•	 Human	mobility	is	not	random,	but	is	characterised	by	
temporal and spatial correlations.52,56

•	 On	a	small	scale,	pedestrian	crowds	do	not	spread	out	
uniformly and fill the available floor space. Rather, for an 
average crowd density D (people per m²) within a large 
area, local measurements of crowd density can be 
approximated with a Gaussian distribution with the 
standard deviation,57 

 Therefore, the critical proximity distance for passing on an 
infection arises at lower average crowd densities than 
would be expected.

•	 Group	sizes	follow	a	zero-truncated	Poisson	distribution.58

•	 Walking	speed	decreased	with	increasing	crowd	density	
and as a result the flow of people follows an inverse 
parabola-like function of crowd density. Therefore, the 
maximum flow possible (capacity) occurs at an 
intermediate crowd density and a high throughput of 
people is difficult to maintain. In addition to density, 
greater time spent by people around an infectious 
individual will affect subsequent numbers of infected and 
ill contacts.

σ= D/3√

Search strategy and selection criteria

We searched Google Scholar and Medline for references for 
this review using the search terms “crowd”, “mass gathering”, 
“environmental”, “disease”, and “Hajj”. Priority was given to 
articles that addressed more than one of the subtopics 
discussed in this review. We included articles published in 
English and German from 1890 until July, 2011.
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networks that are important for the spread of diseases, 
and which, like in the models for pedestrian crowding, 
represent local distances and proximity. We believe that 
this method is the way forward in the development of 
epidemic models that represent local circumstances 
but have macroscopic effects. Such models would allow 
us to test various interventions on a virtual population 
with a computer and measure their success rates before 
testing them on real populations, possibly saving both 
resources and life.
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