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Four phases of interest in the distribution of city sizes are identified and current conflict in the literature
is shown to be a consequence of poorly-selected units of observation. When urban regions are properly
defined, US urban growth obeys Gibrat’s Law and the city size distribution is strictly Zipfian rank-size
with coefficient q = 1.0. Care has to be taken with definition of the largest urban-economic regions, how-
ever; the fit in the upper tail of the distribution is best when they are recognized to be megalopolitan in
scale.
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1. Introduction

Following the proclamation of a ‘‘New Economic Geography’’ by
Krugman (1991a,b) there has been a renewed interest in city size
distributions, led by vigorous debates among economists and be-
tween them and others, especially physicists. Researchers have
asked about the theoretical underpinnings of Zipf’s rank-size rule
(Córdoba, 2008a; Duraton, 2006, 2007; Gabaix, 1999; Rossi-Hans-
berg and Wright, 2007); whether urban growth obeys Gibrat’s Law
of Proportionate Effect (Córdoba, 2008b; Cuberes, 2009, 2011;
Eeckhout, 2004, 2009; González-Val et al., 2010; Ioannides and
Overman, 2004; Ioannides and Skouras, 2009; Levy, 2009); whether
Zipf’s rule is best captured by a Pareto or a lognormal distribution,
and the proper testing procedure for distinguishing them (Bee
et al., 2011; Garmestan and Allen, 2008; Terra, 2009; Giesen et al.,
2010; Malevergne et al., 2009, 2011; Nitsch, 2005); the proper units
of observation (Cladera and Arellano Ramos, 2011; Eeckhout, 2004;
Holmes and Lee, 2009; Jiang and Jia, 2010; Nitsch, 2005; Rozenfeld
et al., 2010; Ye, 2006); and whether these units of observation are
independent or spatially autocorrelated (Favaro and Pumain,
2011; Ioannides and Overman, 2004). We place these debates in
their historical settings and then, using the Economic Areas (EAs) de-
fined by the Bureau of Economic Analysis of the US Department of
Commerce as units of observation, demonstrate that US urban-
ll rights reserved.
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regional growth conforms to Gibrat’s Law and that the size distribu-
tion is Pareto in the upper tail, meaning that Zipf’s Law obtains. How-
ever, we find that this solution understates the size of the nation’s
five largest urban regions, which leads us to conclude that they must
be megalopolitan in scale (Gottmann, 1961). By grouping EAs to
approximate such areas as Gottmann’s ‘‘Boswash’’ and ‘‘Sansan’’
we improve the fit of the model in the upper tail, which reinforces
our conclusion that once the observational units are properly de-
fined the US city size distribution in Zipfian in the strict sense.
2. Four research epochs

The distribution of city sizes has been a topic of interest for at
least the last century. Four phases of interest can be identified,
including the surge of activity by the New Economic Geographers
in the last two decades.

2.1. An interesting empirical regularity

Initial interest was sparked by Felix Auerbach’s finding that for
the United States and five European countries, city population con-
formed to the relationship piRi = A, where A is a constant, pi is the
population of the cities in size-class i, and Ri is the rank of class i
when the size-classes are ordered from 1 to n by population size
(Auerbach, 1913). Later, Lotka (1925) found that a better fit for
the 100 largest cities in the US in 1920 was provided by
prr

0.93 = 5,000,000 where pr is the population of the rth ranking city
and cities are ranked from 1 to n in decreasing order of size. Singer
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(1936) rewrote this relationship as rpa
r ¼ A. The coefficient a is ob-

tained by fitting the equation log r = log A � alog pr to the data. This
can written as r ¼ Ap�a

r , where rank r is also the number of cities
with population pr or greater.1 This last expression is the survival
function of a Pareto distribution with exponent a, cumulated from
large to small.

2.2. Zipf’s Law

The second phase of interest began with Zipf’s restatement of
the relationship between population and rank as pr = Kr�q, the
rank-size distribution, going beyond Jefferson’s (1939) proposed
‘‘law of the primate city’’ (Stewart, 1947; Zipf, 1941, 1949). In
the special case where the exponent q = 1, this is known as Zipf’s
Law; pr = K/r = p1/r. Most researchers during this second phase esti-
mated the Zipf model (log pr = log K � q log r) rather than the Pare-
to-form equation,2 but the relationship between the two is
straightforward, and simple algebraic manipulation shows that
q = 1/a. As a ? inf, q ? 0, and all cities are equal size. If a = q = 1.0,
Zipf’s Law holds strictly.

Zipf and Stewart precipitated a rush of subsequent literature
(e.g. Berry, 1961, 1964, 1971) that concluded with an ambitious
cross-national analysis undertaken by Rosen and Resnick (1980),
a comprehensive literature review by Carroll (1982), and several
papers by Alperovich (1984, 1988, 1989). Rosen and Resnick esti-
mated Pareto coefficients for 44 countries c.1970.3 Three quarters
of the cases had a coefficients greater that unity and therefore had
urban populations more evenly distribution than predicted by Zipf’s
Law. This finding was shown to be sensitive to data definitions: Par-
eto coefficients were closer to unity when the observations con-
formed more closely to integrated urban-economic regions rather
than to legally-defined entities, a point to which we will return later
since it has been overlooked by many of the more recent contribu-
tors to the field.4 They concluded that the Pareto distribution was
the best general description of rank-size data.

Despite their rich empirical findings, Rosen and Resnick ended
their investigation with a plea, however. The empirical work lacked
one crucial element, they said: a rigorous theoretical model
explaining the size distribution of cities. By ‘‘theory’’, true to their
training as economists, they meant an intuitively appealing causal
story that stands on an axiomatic foundation. This question of the-
oretical explanation also was at the heart of Carroll’s literature re-
view. After examining the body of empirical work to see whether
any clear choices of theoretical perspective were indicated, he con-
cluded that there were not (Carroll, 1982, p. 37). It seems that at
this point, he said, we do not need new models but instead some
basis upon which to rule out several of the existing ones.
1 This is of course a member of the class of power laws in which the value of the
output y is proportional to some power of the input x = y = f(x) � xa. It follows that r/n
is the proportion of cities of at least population pr, and r=n ¼ ðA=nÞp�a

r which is
equivalent to writing the probability that a city’s population p exceeds pi as
Pr(p > pi) = (A/n)pi�a.

2 Simon (1955) proposed the Yule (1924) distribution as an alternative when the
distribution is that of cities organized by size class. Berry and Garrison (1958)
evaluated several models and favored Simon’s proposal, as did Krugman (1996, p.
399). For a more recent evaluation see Zanette (2008).

3 Allen (1954) had undertaken a similar exercise at an earlier date. A recent
example is Soo (2005).

4 One exception in Nitsch (2005), who reviewed 515 estimates of Zipf’s Law from
29 previous studies. He writes (p.91): ‘‘My results strongly confirm that: for
agglomeration data the average Zipf estimate is considerably smaller (and closer to
one) than for city data; the difference in means is statistically highly significant.’’
Rozenfeld et al. (2011, p. 2223) add:
‘‘An open question that . . . is the following: why is the distribution of ‘‘legal’’ cities
broadly lognormal (Eeckhout, 2004; Levy, 2009; Eeckhout, 2009; Ioannides and
Skouras, 2009), while the distribution of geography-based ‘‘agglomerations’’ is quasi-
Zipf distributed?’’
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2.3. Building a body of theory

This spirit of skepticism about an acceptable theoretical basis pre-
cipitated the third research phase. Krugman, reflecting the economist’s
preference for axiomatic logic, expressed this feeling in a number of
places. ‘‘Attempts to match economic theory with data usually face
the problem that the theory is excessively neat, that theory gives sim-
ple, sharp-edged predictions, whereas the real world throws up com-
plicated and messy outcomes. When it comes to the size distribution
of cities, however, the problem we face is that data offer a stunningly
neat picture, one that is hard to reproduce in any plausible (or even
implausible) theoretical model’’ ( Fujita et al., 2001, p. 215). A new
group of scholars, largely economists, took up this theoretical chal-
lenge, accepting Zipf’s Law as the outcome of growth processes that
satisfy Gibrat’s Law5 and seeking to provide an axiomatic economic
foundation for the law by providing one for Gibrat.

The first attempt to build such an economic theory was that of
Gabaix (1999, see also Gabaix and Ioannides, 2003), who began by
confirming the empirical regularity by fitting the Pareto form to
the 135 largest US Standard Metropolitan Areas listed in the Statis-
tical Abstract of the United States in 1991, yielding: ln r = 10.53 �
1.005(±0.010)ln pr. With â ¼ 1:005;1=â ¼ q ¼ :995: Since â is very
close to 1 this implies that Pr(p > pi) � A/pi, which further implies
that distribution of city sizes can be described by a power law, at least
in the upper tail. Feeling secure in the empirics, Gabaix then assumed a
fixed number of cities that, for a certain range of sizes, grow stochasti-
cally, with the process described by a common mean and variance, i.e.
the homogenous growth process that is a reflection of Gibrat’s Law. In
the steady state, this process produces a distribution of city sizes that
follows Zipf’s Law with a power exponent of 1, thereby ‘‘transforming a
quite puzzling regularity, Zipf’s Law, into a pattern much easier to ex-
plain, Gibrat’s Law . . . models of city growth should deliver Gibrat’s
Law in the upper tail’’ (Gabaix, 1999, p. 742).

What type of urban growth process can be described by a com-
mon mean and a common variance? Gabaix postulated that growth
shocks are iid and impact utilities both positively and negatively.6

Differential population growth was assumed to result from migration
which, in equilibrium, forces utility-adjusted wages to equate at the
margin. Adding the assumption of constant returns to scale in produc-
tion technology yielded an expression in which expected urban
growth rates are identical across city sizes and variations are random
normal deviates, the exponent a tends to 1, and Zipf’s Law results.7

Gabaix’s paper was not without its critics. Physicists Blank and
Solomon (2001) asserted that Gabaix’s formulation fails to con-
Gibrat’s Law states the size S of an observation is independent of its rate of
growth dS(t)/dt. This ‘‘Law of Proportionate Effect’’ produces an outcome in which the
logarithms of S are distributed according to the normal distribution, i.e. a lognormal
distribution (Aitchison and Brown, 1957; Gibrat, 1931). Consider the growth equation
pit = ait pit � 1 where pit is the size of city i at time t and ait is a random positive growth
rate. Taking the logarithm and iterating produces log pit = log pi0 + ai1 + ai2 + � � �. If the
ait are independent and identically distributed (iid) random variables with mean A
and standard deviation B, the central limit theorem gives log Pit = tA +

p
t � B � C, where

C is a Gaussian random it variable N(0, 1). By assuming that the stochastic process for
a given city over multiple time periods is equivalent to a sample of many cities at a
point in time, the resulting distribution of city sizes will be lognormal. Because
Gibrat’s Law models a given city’s growth as a random walk, no steady state is
possible without a modification, however, in which pit = aitpit�1 + eit and eit > 0. The
effect of this modification is to transform the lognormal into a Pareto distribution. See
Malevergne et al. (2009, 2011).

6 Other shock-based approaches include Zanette and Manrubia (1997), who
generated intermittent spatiotemporal structures from multiplicative and diffusion
processes in which citizens of the same city are subject to the same aggregate shocks,
and Marsili and Zhang (1998), who centered their shocks on migration processes. In
both cases, numerical simulations showed that Zipf’s Law emerges as the steady state.

7 Following on a suggestion by Berry and Garrison (1958), Hsu (2010) begins with
central place theory as an equilibrium entry model and identifies the conditions
under which a hierarchical city size distribution will follow a power law.
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verge on a power law. They identified what they believed to be a
missing assumption and then, following Levy and Solomon (1996),
demonstrated how a random growth model can generate a power
law.8 In light of this criticism, and because it lacks economic content,
other economists have attempted to develop alternative axiomatic
models together with alternative formulations of random growth
models that satisfy Gibrat’s Law. Duranton, for example argued that
several economic mechanisms could equally well replicate the ob-
served patterns and that as a consequence the challenge was no longer
to focus on the exact shape of the city-size distribution, but instead to
evaluate what the real drivers of urban growth and decline are, in par-
ticular the churning of industries across cities (Duraton, 2006, 2007).
In the same vein, Eeckhout (2004) proposed an equilibrium theory of
local externalities in which the driving forces, assumed to be random
local productivity processes and perfect mobility of workers, ex-
plained lognormality of the city distribution, and in Rossi-Hansberg
and Wright’s (2007) urban growth model cities arise endogenously
out of a tradeoff between agglomeration forces and congestion costs.
Urban structure was shown to eliminate local economies of scale
while mobility ensured that the marginal product of labor is scale
independent, yielding constant returns to scale that, in the aggregate,
produced balanced growth and therefore a city-size distribution
describable by a power law with an exponent of 1.

Following this, Córdoba (2008a,b) sought to isolate a standard
urban model with localization economies that can generate a Par-
eto city-size distribution. His key statistical result was that the
model must have a balanced growth path in which all cities have
the same expected growth rate. This is achieved when, under one
of three conditions (the elasticity of substitution between goods
is 1, externalities are equal across goods, or a knife-edge condition
on preference and technologies is satisfied) city growth is indepen-
dent of size and the steady-state distribution of the fundamentals,
preferences, and technologies for different goods is Pareto.9 The
economic explanation is that the standard model can generate a Par-
eto distribution of city sizes either when preferences for goods fol-
low reflected random walks and the elasticity of substitution
between goods is 1, or when total factor productivities in the pro-
duction of different goods follow reflected random walks and
increasing returns are equal across goods. Under such conditions,
the steady state distribution of the exogenous driving force must
be Pareto. Thus, ‘‘Gibrat’s Law is not just an explanation of Zipf’s
Law . . . it is the . . . explanation’’ (Córdoba, 2008a, p. 178).
10 Axtell (2000) had argued earlier that there are three circumstances in which
agent-based modeling may be deployed. The first is when equations can be
formulated that completely describe a social process, and these equations are
explicitly soluble, either analytically or numerically. A second is when mathematical
2.4. A stochastic steady-state

The case might seem to be closed, but at this juncture the recent
literature has taken two critical turns. One group of scholars argues
that an economic theory is not required because skewed distribu-
tion functions of the city size type are uniquely stochastic steady
states. Another group has engaged in a confrontational debate
about whether Gibrat’s Law describes urban growth and whether
the size distribution is better classified as lognormal or Pareto.
8 Nicholas M. Gotts states (personal correspondence 23 April 2004) that the
missing assumption is that ln(N)� C, where N is the number of cities, and C is the
ratio between mean and minimum city sizes, and because the mean size grows
without limit, C ? 0 as t ?1. However, the Gabaix (1999, pp. 749–750) proposition
1 argument is couched in terms of normalized city sizes; i.e. his term S-min is fixed in
relation to the expected sum of all city sizes (note 14 on p. 743), so the absolute
minimum size increases over time and S-min/S-bar (where S-bar is mean normalized
expected city size) remains fixed. Thus, Blank and Solomon’s criticism is at least
partially mistaken although Gabaix’s argument for a slope of �1 does not hold in
general, since it depends on the number of cities (N) being very large in relation to the
size ratio between the mean and smallest cities (C).

9 Other economists have focused upon other assumptions that are required to
produce Zipf’s Law, for example De Wit (2005).
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In the first group, Axtell and Florida (2001) have produced Zip-
fian steady states via agent-based modeling.10 Numerical solutions
yield empirically-accurate firm characteristics: a right-skewed dis-
tribution of firm sizes, a double-exponential distribution of growth
rates and variance in growth rates that decrease with size according
to a power law, which in turn yield city-level macro behavior that
satisfies Gibrat’s Law and produce the Zipf rank-size distribution
as a steady state. In other words the result is self-organized com-
plexity characterized by power law frequency-size scaling (Turcotte
and Rundle, 2002).

In the same vein, Semboloni (2001) has modeled multi-agent
interactions via a probabilistic law to obtain opposing goals that
conform to the Zipfian processes of unification and dispersion and
used numerical analysis to reveal the circumstances under which
the system converges on rank-size as a steady state. Gan et al.
(2006) show via Monte Carlo simulation that the law is a statistical
phenomenon that does not require an economic theory. Batty (2006)
describes the rank-size distribution as emerging as the self-orga-
nized steady-state of a complex adaptive system (Batty, 2006), and
Corominas-Murtra and Solé (2010) describe the law as a common
statistical distribution displaying scaling behavior, an inevitable
outcome of a general class of stochastic systems that evolve to a sta-
ble state somewhere between order and disorder.
2.5. Contemporary contentions

The steady state argument has not been heard by the ‘‘New Eco-
nomic Geographers’’ however. Their attention has been focused on
the validity of Gibrat’s Law and whether city sizes are better de-
scribed by the lognormal or Pareto distribution. Michaels et al.
(2008), using sub-country data for the US from 1880 to 2000, reject
both Gibrat’s Law and the idea of a stable population distribution.
Garmestan and Allen (2008) argue that distinct regional city size
distributions result from variable growth dynamics. González-Val
(2010) and González-Val and Lanaspa (2011) conclude that Gi-
brat’s Law holds only as a long-run average over time in the upper
tail of the distribution, with size affecting the variance of the
growth process, and Benguigui and Blumenfeld-Leiberthal (2011)
assert that Zipf’s Law describes only one of three distinct types of
city size distributions that are currently observable.

These criticisms focus on urban growth paths over long spans of
time, however, not on whether Gibrat’s Law applies to the distribu-
tion of growth rates of sets of cities observed at a point in time, as
is typical in much rank-size research, or whether the lognormal or
Pareto distributions are better fits to the data.11 Eeckhout (2004)
kicked off the latter debate with two assertions: that Zipf’s Law holds
(i.e. the upper tail is Pareto) and that city growth is proportionate
models can be written down but not completely solved, in which case the agent-
based model can shed significant light on the solution structure. Thirdly, when
writing down equations is not a useful activity, agent-based computational models
may be the only way available to explore process systematically. Axtell and Florida
(2001) is an example of this third usage.

11 Another criticism is that in OLS may be an inappropriate estimator. Gabaix and
Ioannides (2003), following Embreachts et al. (1997), draw varying sized samples of
city sizes from a population defined by an exact power with a = 1 and demonstrate
that the smaller the sample, the greater the underestimation both of the size of a (i.e.
overestimation of q) and of the true standard error of the estimated coefficient.
Nishiyama and Osada (2004) provide exact estimates of the bias and variance of q for
varying n. Gabaix and Ioannides propose that Hill estimators be used as an alternative
(Hill, 1970, 1974, 1975; Hill and Woodroofe, 1975), but they too are biased if the
random growth model fails (Gabaix, 1999; Gabaix and Ioannides, 2003). Gabaix and
Ibragimov (2007) offer a simple solution to correcting for the small sample bias; also
see Terra (2009).
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(i.e. Gibrat’s Law operates), leading to a puzzle: Gibrat’s Law gives
rise to a lognormal rather than a Pareto distribution. Eeckhout ar-
gues that this dilemma results because so much research has focused
on truncated distributions, such as census-defined metropolitan
areas. Both distributions, he says track the data closely, but the Par-
eto coefficient increases as the truncation point increases on the hor-
izontal axis and the Pareto fits the data less well, while that for the
lognormal remains unchanged. In other words changes in the esti-
mated Pareto coefficient are theoretically consistent with a changing
truncation point of the lognormal distribution (Eeckhout, 2004, p.
1433).

To provide empirical confirmation he analyzed the distribution
of the ‘‘complete’’ set of places in the US; i.e. all 25,359 legally-
bounded places defined by the US Bureau of the Census in 2000,
ranging in size from New York’s 8 million to the smallest place
with only 1 resident. The size distribution was shown to be lognor-
mal and growth to be independent of size. The Zipf coefficient is
nearly 1.0 if computed for metropolitan areas, but varies systemat-
ically with differing cut points on the complete distribution, con-
sistent with the lognormal.

Levy (2009) challenged Eeckhout’s conclusions, arguing that
tests reject the lognormal for the larger cities in the upper tail, cit-
ies whose log size exceeds the average by three standard devia-
tions. In reply Eeckhout (2009) argued that since both the
lognormal and the Pareto distributions have tails with similar
properties it is natural that the upper tail can be fitted to a Pareto
distribution, even if the underlying distribution is lognormal. The
difference between the two authors, Malevergne et al. (2009,
2011) argue, is that both Eeckhout and Levy use inadequate tests.
After explaining how Gibrat’s Law underpins both the lognormal
and Pareto distributions (see footnote 5), they perform the UMPU
(uniformly most powerful unbiased) test for the null hypothesis
of the Pareto distribution against the lognormal and conclude that
for the largest 1000 places in Eeckhout’s data set the distribution is
Pareto, confirming Levy’s (2009) argument that the lower ranges of
the data on places are lognormal but the top conforms to a power
distribution.12 Building on this, Giesen et al. (2010) propose that the
double Pareto lognormal distribution (DPLN) is an even better fit.
This distribution has a lognormal body but also features a power
law in the upper and lower tails and arises from a stochastic urban
growth process with random city formation.

3. Three questions

Stepping back from these debates, there appear to be three sim-
ple questions that need to be addressed empirically: What are the
appropriate urban-regional units to which the size distribution
models should be fitted? Do the growth rates of these units obey
Gibrat’s Law ? Does Zipf’s Law apply strictly in the upper tail of
the size distribution with q = 1.0? We provide answers for the US
for the 1990–2010 time span.

3.1. The units of observation

Much of the debate about proper functional form stems from
the New Economic Geographers’ injudicious selection of units of
observation. Legally-bounded pieces of real estate capture only
pieces of regionally-integrated Economic Areas, with wide varia-
tions in size and rates of growth, and interdependence of growth
rates within economic areas. The continued use of such units by,
for example, Eeckhout (2004, 2009) and those building on his re-
12 Bee et al. (2011) argue that a maximum entropy test may be superior to UMPU
estimates. Goldstein et al. (2004) propose use of maximum likelihood methods, but
combine them with Kolmogorov–Smirnov tests.
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search adds confusion rather than clarity to the distributional
question, because the fragmentation of legally defined entities
adds significantly to the variance of growth rates and the length
of the lower tail of the size distribution; his 25,359 places are parts
of less than 200 spatially-integrated urban-regional labor markets.

The recognition that urban growth had to be understood within
larger spatial units defined using labor market criteria led the US
government to delineate Standard Metropolitan Areas in 1950. As
useful as these areas were, their definition cut off many outlying
areas tied by commuting to jobs located in urban cores and failed
to recognize the significance of cross-commuting in the most den-
sely settled parts of the nation, however. Therefore, after the 1960
census, a research team at the University of Chicago was commis-
sioned to analyze the commuting data and to map the actual ex-
tent of the nation’s commuting regions (Berry et al., 1968; Berry,
1973; Berry and Gillard, 1977). The Office of Business Economics
(now the Bureau of Economic Analysis) of the US. Department of
Commerce used these maps as the first step in the creation of a
set of economic regions as they tried to develop regional accounts
that summed to national accounts. In sparsely populated parts of
the country the commuting data were supplemented by informa-
tion on newspaper and wholesale markets. The resulting Economic
Areas were seen by regional economists to posses distinct advanta-
ges: they completely disaggregated the United States into subre-
gions, using county units as building blocks, and they had a high
degree of ‘‘closure’’ with respect to their job and housing markets
and the tertiary sector of their economies. This meant that fore-
casts based on assumptions about the economic base (job market)
could be translated into population forecasts, income earned in
each area could be equated with income spent plus saving, and a
tertiary or ‘‘residentiary’’ economic sector could be identified
whose growth, according to traditional economic theory, ought
to be related to total sales made within the areas, in contrast to
the primary and secondary sectors whose growth was related to
sales made outside the Economic Area. The definitions were reas-
sessed in 1977, 1983, 1994 and 2004, using the commuting infor-
mation provided by the 1970, 1980, 1990 and 2000 censuses,
resulting in some modifications but with the same goals and out-
comes. Some areas were grouped because of increased cross com-
muting, and new regions were defined that centered on small
economic centers in the less densely settled parts of the country.
We believe that these spatial units capture the essential require-
ment of any analysis of city sizes and growth: the independence
of their labor markets and therefore of the units of growth, satisfy-
ing Rosen and Resnick’s (1980) call for use of integrated economic
units. None of the spatial units proposed as alternatives (Holmes
and Lee, 2009; Rozenfeld et al., 2010; Ye, 2006) satisfy this require-
ment. In the analysis that follows we use the EAs with populations
exceeding 500,000 as the observations. At smaller sizes there is
much greater variance in the growth rate depending upon features
of limited numbers of export industries, whereas above 500,000
average growth rates converge on the national average.

3.2. Gibrat’s Law for the Economic Areas

A simple cross-sectional test is sufficient to determine whether
Gibrat’s Law describes the growth in population of these Economic
Areas. If the regression log pit = a + blog pit � 1 + ei is estimated and
b = 1.0 Gibrat’s Law holds. If the ei are iit normal the size distribu-
tion is Pareto (Malevergne et al., 2009, 2011).

For the period 1990–2000 b = 1.004 and for 2000–2010 the va-
lue is 1.015. In neither case can the hypothesis that b = 1.0 be re-
jected. The ei in both cases are iit normal, and the R2 in both time
periods exceeds 0.99. The conclusion is that Gibrat’s Law holds,
that the distribution is Pareto, and that Zipf’s Law should apply
strictly with q = 1.0
ize distribution debate: Resolution for US urban regions and megalopolitan
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Table 1
Actual and fitted EA populations in 2010.

Economic area Actual,
’000

Fitted,
’000

New York–Newark–Bridgeport, NY–NJ–CT–PA 23,290 66,437
Los Angeles–Long Beach–Riverside, CA 19,716 33,014
Chicago–Naperville–Michigan City, IL–IN–WI 10,531 21,930
San Jose–San Francisco–Oakland, CA 9715 16,405
Washington–Baltimore–Northern Virginia, DC–MD–

VA–WV
9279 13,098

Boston–Worcester–Manchester, MA–NH 8341 10,897
Dallas–Fort Worth, TX 8073 9328
Atlanta–Sandy Springs–Gainesville, GA–AL 7630 8152
Philadelphia–Camden–Vineland, PA–NJ–DE–MD 7047 7239
Detroit–Warren–Flint, MI 6915 6509

Fig. 1. Log of EA and megalopolitan population in 2010 (vertical axis) plotted
against log of population in 2000 (horizontal axis), with regression line shown.

Fig. 2. Log of EA and megalopolitan population in 2010 plotted against log of rank.

Table 2
Actual and fitted megalopolitan area populations in 2010.

Megalopolitan area Actual, ’000 Fitted, ’000

Boswash 54,587 53,617
Sansan 36,892 26,808
Chicago–Milwaukee 16,329 17,872
Detroit–Cleveland 12,518 13,404
Dallas–Austin 10,567 8936
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3.3. Zipf’s Law for the Economic Areas

We therefore next compute log pir = log pi � q log ri, where the
intercept logpi is the size of the largest Economic Area predicted
by the equation. For 2010 the result is log pit = 7.82 � 1.009log r
with an adj.R2 of 0.962. For 2000 and 1990, respectively, the simi-
larly powerful equations are log pit = 7.760 � 0.994log r and log -
pit = 7.693 � 0.986log r. In none of these years can the hypothesis
that q = 1.0 be rejected. Zipf’s Law applies strictly.

4. A problem in the uppermost tail

Despite the satisfaction of both Gibrat’s and Zipf’s Laws a prob-
lem remains in the uppermost tail of the distribution, however. If
the rank size equation for 2010 is used to predict EA populations
there is underprediction of the sizes of the largest 7–8 regions as
shown in Table 1, with the differences increasing with higher rank.
Others have noticed this upper tail problem. Rosen and Resnick
(1980) suggested that the rank-size rule may be only a first
approximation to the distribution of city sizes because they de-
tected a statistically significant presence of the nonlinearity. Simi-
lar issues were raised by Vining (1976), Black and Henderson
(1999), Dobkins and Ioannides (2000), Ioannides and Overman
(2003), and Favaro and Pumain (2011), with the discussion focused
on lack of independence of the units of observation either via inter-
city migration or due to some other type of spatial autocorrelation.

We suggest an alternative that we term the Megalopolis
Hypothesis. Recall Gottman’s argument (Gottmann, 1961, p. 5)
when he wrote.

‘‘We must abandon the idea of the city as a tightly settled and
organized unit in which people, activities, and riches are
crowded into a very small area clearly separated from its non-
urban surroundings. Every city in this region spreads out far
and wide around its original nucleus; it grows amidst an irreg-
ularly colloidal mixture of rural and suburban landscapes; it
melts on broad fronts with other mixtures, of somewhat similar
though different texture, belonging to the suburban neighbor-
hoods of other cities.’’

He postulated that there were clustered networks of urban re-
gions that he called ‘‘Megalopolitan Areas,’’ giving them such fan-
ciful names as Boswash, ChiPitts and SanSan.

Following in Gottman’s footsteps, we hypothesize that the lin-
ear fit in the uppermost part of the rank-size distribution requires
recognition of several megalopolitan-scale clusters (‘‘Boswash,’’
‘‘Sansan,’’ ‘‘Chicago-Milwaukee,’’ ‘‘Detroit-Cleveland,’’ and ‘‘Dal-
las-Austin’’) formed by clustering 25 closely interdependent EAs.13

Recomputation of the Gibrat equation with the revised data set
for the time period 2000–2010 produces log pit =�.48 + 1.013log pit � 1

with an adj.R2 of.99 and a root MSE of.003. The 95% confidence limits
for b are 0.997–1.03. Gibrat’s Law holds; see Fig. 1. The Zipf equation
for 2010 is log pi = 7.729 � .986log ri with an adj.R2 of .99 and a root
MSE of 0.03. The 95% confidence limits for q are�1.01 to�.97. Zipf’s
Law holds in the strict sense. See Fig. 2. The actual and predicted
uppermost area populations are set down in Table 2.

5. Conclusions

Theory and empirical evidence converge. Gibrat’s Law holds for
the size distribution of U.S. urban regions, as does Zipf’s Law in the
strict sense. The fitted rank-size relationship confirms that the
13 The constituent EAs are: Boswash: EAs 22,49, 70, 72, 118, 127, 137, 174; Sansan:
EAs 61, 97, 140, 145, 146; Chimil: EAs 9, 32, 43, 101, 108, 156; Cledet: EAs 13, 42, 87;
Dalaust: EAs 35, 47, 166.

Please cite this article in press as: Berry, B. J. L., & Okulicz-Kozaryn, A. The city s
areas. J. Cities (2011), doi:10.1016/j.cities.2011.11.007
largest urban-regional units are megalopolitan in scale and when
megalopolitan regions are included in the model the rank-size dis-
tribution maintains linearity throughout, without the uppermost
tail problem of rank-size fits using the EA alone.
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