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Cellular Census:
Explorations in Urban
Data Collection

M
uch of our understanding of ur-
ban systems comes from tradi-
tional data collection methods
such as surveys by person or
phone. These approaches can

provide detailed information about urban behav-
iors, but they’re hard to update and might limit
results to “snapshots in time.”

In the past few years, some innovative ap-
proaches have sought to use mobile devices to col-
lect spatiotemporal data (see the sidebar, “Urban
Analysis Using Mobile-Device Data”). But little
research has been done to develop and analyze the
much larger samples of existing data generated daily
by mobile networks.

The most common explanation for this is that
the challenge of data-sharing with the telecom-

munications industry has ham-
pered data access. However, in
early 2006, a collaboration be-
tween Telecom Italia, which
serves 40 percent of the Roman
market, and MIT’s SENSEable
City Laboratory (http://senseable.
mit.edu) allowed unprecedented
access to aggregate mobile phone
data from Rome. Here, we ex-

plore how researchers might be able to use data
for an entire metropolitan region to analyze
urban dynamics.

The Real Time Rome platform
The TI and MIT collaboration, developed

under the Real Time Rome label, was shown at
the 2006 Venice Biennale. The installation incor-
porated both real-time and historical visualiza-

tions of mobile phone usage levels in central
Rome during autumn 2006. The system archi-
tecture, including data collection, transfer, and
processing, has been detailed elsewhere.1

TI supplied several different types of data, first
and foremost of which was the Erlang, a mea-
sure of network bandwidth usage typically col-
lected at the antenna level. Additionally, TI used
its innovative Lochness platform to supply aggre-
gate location and trajectory data on callers using
the system for more than three minutes at a time.
Two transportation companies—Atac-Rome (a
public bus company) and Samarcanda (a private
taxi company)—also provided supplemental GPS
data to MIT for further processing. However,
here we focus on the Erlang data collected over
four months in late 2006 and covering a region
of 47 km2, considering how it can help us better
understand urban dynamics.

An Erlang is one person-hour of phone use, so
1 Erlang could represent one person talking for an
hour, two people talking for a half hour each, 30
people speaking for two minutes each, and so on.
Consequently, Erlang data is both aggregate and
anonymous, and deducing individual identities
from the data collected and stored in the system is
impossible. Additionally, because Erlang data is a
standard measure used by most network opera-
tors, it’s an accessible source for the analysis of typ-
ical GSM (Global System for Mobile Communi-
cation) networks. You can collect Erlang data
without installing new applications or upgrading
the base station controllers, both of which incur
costs and operational risks for the networks.

Although Erlang data can’t be linked to an indi-
vidual subscriber and doesn’t offer the locational

Analysis of cell phone use can provide an important new way of looking
at the city as a holistic, dynamic system.
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specificity of GPS, it nonetheless remains
attractive for urban research at scales
where this level of resolution is unnec-
essary. In effect, Erlang data provides
both a view of urban space as seen
through network bandwidth consump-
tion and, indirectly, insight into urban
life’s spatial and temporal dynamics.
This aspect makes it an excellent jump-
ing-off point for research supporting
public-transport planning, health and
safety, advertising, and other types of
group-directed activity.

First visualizations 
and hypothesis

Figure 1 shows one of the simplest vi-
sualizations of Erlang data: a 3D plot
of telecommunications activity during
Madonna’s controversial 6 August
2006 performance, when more than
70,000 people converged on the Stadio
Olimpico for a concert condemned by
the Pope. Generic Erlang maps such as
this, which was presented at the Bien-
nale, are graphically appealing and
intuitively easy to grasp. However,
they’re actually quite difficult to inter-
pret rigorously, and they provide little
insight into local-area dynamics with-
out additional processing.

We hypothesize that by employing var-

ious statistical techniques, we can use dif-
ferences in Erlang data over time to derive
clues to the types of activity in the imme-
diate area of the mast. (A mast can carry
multiple antennas, oriented in different
directions or serving different frequencies.)
This analysis is conceptually related to the
idea of a chronotype (see the “Chrono-
types and Space-Time Typologies” side-

bar), except that we’re characterizing
spaces by their mobile-bandwidth use over
time. By analyzing the bandwidth “signa-
ture” of each antenna, we try to envision
how it might correlate with urban activi-
ties in the geographical vicinity.

Because Erlang data is an antenna-
level measure, we needed an algorithm
to spread the point data values across the
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T he Massachusetts Institute of Technology’s Reality Mining project

(http://reality.media.mit.edu) successfully abstracted common

behavioral patterns from the activities of 70 students and faculty issued

with Nokia phones carrying specially designed logging software.1,2

Rein Ahas and Ülar Mark tracked the mobile phones of 300 users

for a “social positioning method” analysis.3 By combining spatio-

temporal data from phones with demographic and attitudinal data

from surveys, they created a map of social spaces in Estonia.

In the UK, the Cityware research group has taken a more readily

scalable approach. They supplement the pedestrian flow data typi-

cally gathered as part of a space syntax analysis with data on Blue-

tooth devices passing through pedestrian survey “gates.”4

However, approaches such as these can suffer from important limi-

tations: they rely on the deployment of ad hoc infrastructure or re-

quire user consent. Consequently, sample sizes are necessarily more

modest and might be limited in terms of the research’s spatial extent.
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Urban Analysis Using Mobile-Device Data

Figure 1. A 3D plot of telecommunications activity during a Madonna concert
in Rome.



area served, accounting for distance
decay in signal coverage and multiple
antennas on a single mast. Carlo Ratti
and his colleagues took a center-of-
gravity approach,2 but to interpolate
values for the entire metropolitan region,
an alternative algorithm3 was used to
divide Rome into “pixels” measuring
1,600 m2. We used an exponential dis-
tribution function to derive an Erlang
point value based on a composite signal
from the surrounding masts.

We use this mathematical notation:

• Loc is the set of 1,600 m2 pixels.
• T96 is the set of times when we made

observations each day of the week.
Because we took measurements every
15 minutes, one day comprises 96
observations.

• Day is the set of {Weekday, Friday, Sat-
urday, Sunday} (we discuss this in
more detail later).

• erlang(�, �, �) defines the Erlang value
at location � � Loc, at time � � T96,
and � � Day.

• indicates the mean of the

values ai, i � I.

(To preserve confidentiality, TI used a
scaling factor to adjust the Erlang values

transmitted to the SENSEable City Labo-
ratory. This means that while the rela-
tive difference between any two observa-
tions is scaled consistently, the actual
Erlang value at that point in time is un-
known. So, it’s helpful to focus on the
relationships between points over time
and space rather than the specific value
at any one point in time.)

Using prior knowledge of the city, we
arbitrarily selected eight locations that
we expected to have markedly different
signatures. Following an initial vi-
sualization exercise, we selected six for
analysis:

• Termini, Rome’s main passenger rail
station and busiest subway station;

• Trastevere, a mixed-use area popular
with Romans and tourists for its bars
and restaurants;

• the Piazza Bologna, a residential area
east of the city center;

• the area in front of the Pantheon (one
of Rome’s premier tourist attractions),
which also contains many bars and
restaurants;

• the Stadio Olimpico, a sports and ma-
jor concert venue northwest of central
Rome; and

• Tiburtina, a smaller rail and subway
interchange.

Figure 2 shows the pixels for these six
locations.

To minimize the impact of special
events on the data set, we calculated an
average Erlang value for each pixel at
each 15-minute interval, using a 90-day
period. So, for example, the data point
for 9 a.m. Monday is an average of every
9 a.m. Monday value between 1 Sep-
tember and 30 November 2006. We
excluded civic holidays from the calcu-
lation on the basis that they would intro-
duce unnecessary noise.

Erlang data by day of the week
Beginning with a minimal level of

processing, figure 3 shows how Erlang
data changes over time at each of the
six selected pixels. As the graphs in-
dicate, Monday through Friday are
broadly similar, except for a more rapid
decrease in activity on Friday after-
noon, suggesting a transition to the
weekend. Even more strikingly, Satur-
day and Sunday values often drop be-
low 50 percent of the typical weekday
load, but the drop’s magnitude varies
dramatically from site to site. This find-
ing indicates that weekday and week-
end data should be treated separately
in our analysis.

Intriguingly, areas more closely identi-

mean a
i I i∈

{ }
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T o help conceptualize a city’s complex hourly, daily, weekly,

monthly, and annual rhythms, Luca Bertolini and Martin Dijst

put forward Roberta Bonfiglioli’s concept of the chronotype.1 The

chronotype is a useful conceptual handle for thinking about how dif-

ferent groups occupy the same space depending on the time of day.

Bertolini and Dijst offer the example of a mixed-use area inhabited by

young couples without children and by families. The young couples

will likely work in another part of the city, returning perhaps only in

the evening to socialize in bars and restaurants. In contrast, family

members will go shopping and use other services during the day in

this area. The same space can thus have two or more distinct uses and

populations.

As another way to conceptualize these rhythms, Robbert Zand-

vliet and Dijst offer space-time typologies.2 That is, they propose “a

typology of urban, suburban, and rural municipalities … based on

diurnal weekday variations in visitor populations”2 as a way to un-

derstand how place works in Manuel Castells’ “network society.”3
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fied with Roman residents, such as the
Piazza Bologna and Tiburtina, display
lower levels of day-to-day Erlang variance
than those associated with more transient
populations of commuters or tourists,
such as Termini and the Pantheon. This
peculiarity suggests that the greater the
flux of people—or, possibly, nonresi-
dents—through a site, the greater the vari-
ance in the signal. Conversely, predomi-
nantly “local” areas seem to have higher
levels of routine or habitual activity and
thus less variation between days.

However, in spite of the differences
between weekdays, Fridays, and the
weekend, figure 3 shows that all six loca-
tions demonstrate a broadly compara-
ble rhythm—a rapid ramping-up of
telecommunications activity between 6
and 10 a.m. on weekdays and a slower
pace on weekends. Apart from the Sta-
dio Olimpico, where the rhythms of con-
certs and football matches clearly show
on the graph, patterns are quite uniform:
a clear double peak and varying ratios
of weekday-to-weekend activity. So, how
can we make differences in signatures
between different sites more evident?

Normalization
The magnitude of the differences be-

tween sites in figure 3 makes it hard to
compare them in a more detailed way,
so some type of data normalization is
necessary. In figure 4, we plot the ratio of
telecommunications intensity at one
pixel against the average of every pixel in
the system at that point in time (nor-
malization over space). We then compare
that to the daily pixel average (normal-
ization over time). Using this approach,
we can identify otherwise hidden shifts
in the relative intensity of activity across
Rome.

We employed these normalization steps:

1. For each location � and day �, we
calculate

2. We then normalize the signature
over space:

3. We then normalize the signature over
time:

The differences in figure 4 are quite
visible, and the radically different signa-
ture at the Stadio Olimpico indicates that
you can readily recognize certain classes
of urban activity by the unusual distri-

bution of telecommunications activity.
Such events will likely place a corre-
spondingly high load on urban infra-
structure and resources, and a similar
spike in Erlang data is also likely during
emergencies. This suggests that the real-
time recognition of unusual concentra-
tions of telecommunications activity
might have relevance for public safety
planning and transport scheduling.

On weekends, the higher levels of
bandwidth use between midnight and 2
a.m. near the Pantheon and in Traste-
vere relative to work-oriented and resi-
dentially oriented pixels strongly suggest
leisure activity. This feature suggests that
we can also identify cultural and leisure
areas on the basis of their telecommuni-
cations signature. Another feature with
implications for the understanding of
urban dynamics is the high level of activ-
ity at the transit hubs on weekday morn-
ings, compared to residential sites.

Figure 5 shows a more diffuse pattern
of spatial activity on weekends. This is
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0 Selected pixels for analysis625 Subway stations1,250 2,500 meters

Figure 2. A map of Rome indicating 
the six locations (“pixels”) selected for
analysis of mobile phone usage.



consistent with the idea that although
weekday telecommunications activity at
each site exhibits a more dynamic tempo-
ral pattern, weekend activity exhibits more
spatial dispersal. From an urban-planning
standpoint, this strongly suggests large
commuter flows into the central business
district during the week and more resi-
dentially oriented activity on weekends.
Of course, planners are well aware of this
spatial relationship, but spatial and tem-
poral visualization of these features at this
scale hasn’t been possible before.

One caveat: the levels of activity be-
tween 3 and 6 a.m. throughout the week
mean that any analysis using that period
would be rooted in extremely low Erlang
values. So, such a comparison might erro-
neously indicate excessive shifts in activ-
ity from site to site. Nonetheless, from this
initial analysis, it seems that through nor-
malized signatures we can reconstruct
some of the functioning of the city using
the invisible fingerprints of mobile phone
infrastructure.

Cluster analysis
So far, we’ve focused largely on indi-

vidual pixels, and we’ve identified some
interesting features at a fairly detailed
spatial level. Our preliminary analysis
indicates that residential areas, com-
muter hubs, nighttime hot spots, and
even special-event venues demonstrate
features consistent with our contextual,
anecdotal knowledge of Rome. How-
ever, validating our hypotheses requires
a more rigorously quantitative study.
The ultimate goal is to take the derived
signatures, group them by degree of sim-
ilarity, and map them to urban spa-
tiotemporal structures.

As a proof of concept, we created a
simplified vector—required for compu-
tational manageability—to feed pixel
data for each of Rome’s 262,144 pixels
to a clustering algorithm. An examina-
tion of our six selected pixels suggested
that six times in the daily cycle of Erlang
activity are particularly significant: 1
a.m., 7 a.m., 11 a.m., 2 p.m., 5 p.m., and

9 p.m. Each of these points lies toward
the middle of a period of rapid change
or significant variation between sites—
the early morning rise in activity, late
morning peak period, early afternoon
lull, afternoon peak, and evening drop.
The six normalized Erlang values thus
make up the coordinates of a vector that
describes, in a limited way, each pixel’s
signature.

We could use many clustering tech-
niques to create segmentations based on
the affinity between vectors. We chose a
K-Means approach, such that every
observation in a cluster is as much like
other members of that cluster and as dif-
ferent as possible from members of any
other cluster. With six coordinates from
each day, and separate sets of coordi-
nates for Monday through Thursday
(one set of averaged observations), Fri-
day, Saturday, and Sunday, the K-Means
algorithm used a 24-dimensional space.

We employed two clustering steps.
First, for each pixel, we calculate fea-
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Figure 3. Erlang data for the six locations by day of week.



ture(loc) = {erlang(�, �, j)}, j = 1 a.m., 7
a.m., 11 a.m., 2 p.m., 5 p.m., and 9 p.m.

Second, the K-Means clustering algo-
rithm partitions the pixels into mutually
exclusive clusters. Each cluster is charac-
terized by its centroid, and the algorithm
aims to minimize the error function:

where clusterk is the set of objects related
to the cluster k, and centroidk is the mean
of all the points in clusterk. We calculated
the distance between pixels using the
squared Euclidean distance:

As a result of the clustering process, we
can group all pixels in the city into any arbi-
trary number of groups based on the affin-
ity of their composite Erlang signature. In
our tests, we found a mix of clusters that
suggest a complex set of relationships
between signatures. Given the sheer com-

plexity of cities, this is hardly surprising.
However, the existence of several small
clusters with much stronger levels of affil-
iation or differentiation indicates that the
overall data set includes some quite distinct
signatures. These signatures will likely map
to distinct types of urban activity.

For this initial research, we worked

with eight clusters as a compromise
between simplicity and specificity. Doing
this gave us a fair cophenetic correlation
value of 0.7704. Cophenetic correlation
is one way to gauge the clusters’ fit to the
original data set—values approaching
1.0 suggest a good fit—by comparing
pairwise linkages between observations.
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Projecting these clusters onto a map
of Rome (see figure 6) naturally indi-
cates that they’re closely linked to the
normalized Erlang signatures. The
edges of Rome’s urban core are clearly
visible, as are the hot spots of urban
activity straddling the Tiber River. The
map suggests an overall structure to the
city, with a correspondence between
levels of telecommunications activity
and types of human activity. At this
point, however, we can’t verifiably con-
nect cellular signatures to specific types
of human activity.

We then adjusted the metric to favor
the two most distinctive types of use
seen in the normalized graphs: early
morning use suggestive of commuting
behavior and late evening use suggestive
of nighttime leisure activities. For these
clusters we obtained cophenetic corre-
lations of 0.7630 and 0.8508, indicat-
ing that the clustering approach has sub-
stantial promise.

The red nighttime-leisure cluster in fig-
ure 7a shows two discrete spatial group-
ings that map anecdotally to known
areas of evening activity: Trastevere and
the area ranging to the west and south
of the Piazza Navona, and the vicinity
of the Piazza Spagna. The red commuter
clusters in figure 7b quite astonishingly

map to the most important points of
entry to the city by car and train: Ter-
mini station, Tiburtina, the end of the
Corso d’Italia, the Porta Maggiore, and
the Porta San Giovanni.

Discussion
Our preliminary findings suggest that

signature analysis can provide an impor-
tant new way of looking at the city as a
holistic, dynamic system. In particular, the
mobile phone network lets us develop a
real-time representation of those dynam-
ics at the city and city-region scale. This
approach can complement traditional col-
lection techniques, which are often out-
dated by the time they’re available to pol-
icy makers and the general public. Of
course, because our hypotheses so far are
based on anecdotal evidence, our findings
will require additional validation, which
we outline below.

What’s most promising about this
early research is the extent to which our
findings seem to parallel those of other
European researchers4,5 as well as more
conceptual research into telecommuni-
cations’ impacts on urban behaviors.6,7

In particular, we can characterize areas
on the basis of flows and dynamics
rather than on the basis of comparatively
static physical or demographic features.

Moreover, we’ve recently received
data from Pagine Gialle (the Italian Yel-
low Pages) with which we intend to val-
idate our initial findings by linking the
signatures to spatial data on business
types and densities. In so doing, we can
build on the processing requirements we
discussed earlier in this article:

1. Antenna and pixel values must be
normalized over both space and
time to provide a measure of rela-
tive telecommunications intensity.

2. The substantial differences between
weekdays and weekends require
treating them separately in a classi-
fication algorithm.

3. The key time periods intimated in
this initial analysis appear to be 12
to 2 a.m., 5 to 8 a.m., 10 a.m. to 12
p.m., 2 to 6 p.m., and 8 to 11 p.m.
However, as our initial cluster analy-
sis makes clear, these aren’t the only
factors.

We expect several other analytical
approaches to yield insights into net-
work usage patterns. One of the most
promising approaches is Eigenbehavior
analysis.8 Because we can easily map the
signature to a vector representation of
the sort already used in the cluster analy-
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8
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Figure 6. Analysis of eight clusters of Erlang data: (a) clusters 1–4; (b) a satellite view of Rome, for comparison; (c) clusters 5–8.



sis, deriving the Eigenvectors should be
quite straightforward. Applying other
analytical techniques such as Fourier and
wavelet transform plots might reveal
new, distinct characteristics. Ideally, each
of these analyses will eventually feed into
a single categorization process that can
discriminate between discrete types of
behavior at the antenna and pixel levels.

Limitations of research
As we mentioned before, TI’s masking

function meant that we weren’t able to
work with true Erlang values. An addi-
tional constraint is that owing to opera-
tional requirements and planning re-
strictions, GSM masts are irregularly
distributed and oriented. To manage the
computational and mathematical com-
plexity of calculating point values for
262,144 pixels over a three-month per-
iod, our algorithm spreads Erlang data
through all 360 degrees, producing a pos-
sible skew in the overall distribution.

Finally, not all masts handle both the
900- and 1,800-Hz bands used in
Europe. So, some network activity might
gravitate toward more physically remote
base stations with the hardware to
process calls in a particular band. We
don’t have data that would let us com-
pensate for these possible biases. So,
without adopting an entirely different
approach to data collection—one that
the network operator would have been
reluctant to support at this development
stage—localizing phones more accu-
rately is impossible.

Although the data to which we cur-
rently have access has clear, substantial
limitations, we believe our approach rep-
resents an appropriate trade-off between
locational specificity and implementa-
tional feasibility. Fortunately, analysis at
the city and city-regional scale doesn’t
depend on the high level of accuracy that

location-based services typically require.
So, we feel that there’s plenty of oppor-
tunity to gain valuable insights into
urban dynamics using Erlang data at
smaller scales, and we intend to move
forward with it.

I
t would be exciting to compare the
signatures collected from Rome
with similar data from other major
European cities such as London,

Paris, or Frankfurt. For instance, it’s rea-
sonable to expect that cities with more
distinct spatial patterns of human activ-
ity might display correspondingly more
distinct patterns of network use and
more readily classifiable signatures.
Unfortunately, at this time commercial
considerations appear to preclude using
data from other network operators.

This issue highlights the extent to
which research using cellular networks
must take nonscientific factors into
account. First, a policy framework at the
national or European level that encour-
ages networks to share nonidentifiable
data with planning and policy researchers
would be immensely helpful. Clearly,
there are important considerations from
the standpoint of commercial confiden-
tiality, personal privacy, and possibly
even national security. However, in the
absence of clear regulatory guidance, fur-

ther research using cell phones—the most
widely deployed device with locational
capabilities—won’t be possible at the city
or city-region scale.

Without encouragement, far more
detailed data sets held by the networks
will never see the light of day. For in-
stance, paging data—generated by
polling the phones in a cell to obtain a
list of IMEI (International Mobile Equip-
ment Identity) numbers at the mast
level—could provide unmatched detail
on travel origins and destinations, and
on population densities. By scrambling
handset identifiers with changing encryp-
tion schemes, reporting only partial tra-
jectories, and never reporting on cells or
paths containing fewer than an agreed
minimum number of users, you would
be able to perform this kind of research
without compromising personal privacy.

This data would also assist enormously
in understanding how individual and
group behavior changes over time and
space. This would not only shed further
light on the rhythms of urban life but also
address the fact that you can’t derive met-
rics on activity and population densities
from Erlang data alone.

The challenge is that as the data
becomes more useful, it also becomes
more sensitive to both operators and end
users. An all-or-nothing approach to pri-
vacy has hampered this discussion.
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Figure 7. Analysis of the five clusters 
covering Erlang data for the two most
distinctive types of cell phone use: 
(a) nighttime leisure, (b) early morning
commuting.



38 PERVASIVEcomputing www.computer.org/pervasive

U R B A N  C O M P U T I N G

It would be helpful to move toward a
more nuanced understanding of how to
preserve reasonable expectations of pri-
vacy by the network user while creating
mechanisms to permit future research.
We need to establish the extent to which
certain types of data and analysis create
either the perception of a privacy inva-
sion9 or the real risk of trail reidentifi-
cation,10 and to set out the trade-offs for
public review and discussion.
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