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What is Entropy?

At one level, you don’t need to know what it is.
You just need to be familiar that there is a
technigue of maximising a quantity subject to
known information — constraints

You could think of this quantity as Accessibility or
as Utility — in fact many people do.

Maximising utility is easy enough to understand
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Now there are some very useful insights if we
think of entropy as information —and we will
do so as Wilson (1970, 2010) does.

So we maximise information rather than entropy
but there are some really interesting issues
about entropy and thermodynamics that we
don’t have time to go into here. To give a taste

of these, we need to look at the properties
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So this is a bit of digression to begin with but let
us not forget that this mysterious quantity
called entropy is not widely understood even

by physicists, perhaps especially by physicists.

Von Neumann’s to Shannon in 1948 says it all:

“You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it
already has a name. In the second place, and more important, no one really
knows what entropy really is, so in a debate you will always have the

advantage!”

ﬁ Centre for Advanced Spatial Analysis =
Lol

Ok. Let me first state the formula for entropy as

information which Shannon derived. It is

H=-> p;logp,
i=1

How do we get this? Now we can get it many
ways but the easiest in my view is this. We
define information from the probability of an
event occurring p;. If the probability is low and

the event occurs, the information gain is high
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. . : 1
and vice versa, so we define raw info as —
Pi

But if an event occurs and another event occurs
which is independent, then the raw info is L
PiP;
Now information gained should be additive, we
should be able to add the first info and the

1 1 1
second info to get this but ——# —+—

PiP; B Py
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The only function to do this is the log of L
P;

And we thus write the information as follows
1 1 1
) =F()+F()
1p2 pl p2

—log(p,p,) =—log(p,) —log(p,)

F(

And if we take the average or expected value of
all these probabilities in the set, we multiply

the info by the probability of each and sum
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To get
H=-> plogp,
i=1

Now entropy or information is large — big — when

all thle probabilities are the same — uniform
P :H
And it is small — in fact 0 — when one probability

is 1 and the rest are zero

p, =1 andtherestare p; =0,vj=Ii
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We can draw a graph of all these probabilities as

follows — first when there are all equal

p =1/n and Entropy H = max

And then when only one is equal to 1

p =1, therest 0, Entropy H=min

In the first case there is extreme homogeneity

and in the second extreme order
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Entropy-Maximising Reviewed Again

Now Alan Wilson, | think, introduced a method of
maximising entropy which is equivalent to
maximising uncertainty or information subject to a
series of things we know about the distribution — like
the fact that the probabilities must add to 1 and the
average must be preserved — conserved and so on.

Essentially we choose a probability distribution so that
we let there be as much uncertainty as possible
subject to what information we know which is
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This is not the easiest point to grasp — why would we
want to maximise this kind of uncertainty — well
because if we didn’t we would be assuming more
than we knew — if we know there is some more info
then we put it in as constraints. If we know p=1, we
say so in the constraints. Let us review the formal

process
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The Mathematics

Let me repeat the Wilson stuff which is standard
statistical mechanics

Maximise H = _i p; log p.
i=1

Subject to Zpizl and Y. pic; =C
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And we then get the classic negative exponential

function which can be written as

_ exp(-Ac;) 3
Y= 2.n =t

Now we don’t know this is a negative function, it
might be positive — it depends on how we set
up the problem but in working out
probabilities wrt to costs, it implies the higher

the cost, the lower the probability of location
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The Classic Negative Exponential —as Good

as an Inverse Power Law? Preferable Even
l
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Note the tails of the two distributions
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A Phenomenological Demo — In Class

| don’t think we can do this in class but let us try
— assume that you all start with a location cost
of 100 pounds, and then you have to choose
someone at random and swap a small fraction
say 1 pounds so that one of you wins and one
loses 1 pounds. We choose randomly

| will try it with five people and see what we get
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Ok — I will chose five people adjacent to each
other

A B,C D,and E

Now | will read the following choices from my
random number generator, and then also tell
you who to choose, randomly and what you
will swap randomly

You then do it each time and keep a track of your

totals. Oh let us do it 10 times - what do we get

A
—_

Centre for Advanced Spatial Analysis

Ll

The answer is—1 can’t do it in class — because |
wrote a little computer program in VB to do it
and | needed over a million runs and some 40
people to be able to get near to a negative
exponential as | will show you

This is what | get — next page
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Private Sub Command1_Click()

Dim People(100) As Single

Money = 100 10

SwapMoney =1

n=40 9

Fori=1Ton

People(i) = Money 8

'Print i, People(i)

Next i 7

t=1

For i = t To 1000000 6

ii = Int((Rnd(1) * n) + 1)

ji = Int((Rnd(1) * n) + 1) 5

If ii = jj Then GoTo 777

If People(ii) = 0 Then People(ii) = 1: GoTo 777 4
3
2
1
0

y = -3.3401Ln(x) + 21.934
R?=0.8379

If People(jj) = 0 Then People(jj) = 1: GoTo 777
d =Rnd(1)

Ifd> 0.5 Then

fid = SwapMoney

fid = -fid

End If

People(ii) = People(ii) + fid

People(jj) = People(jj) + fid

Total =0 0 200 400 600 800
Foriz=1Ton

Total = Total + People(iz)

Next iz

'Printii, jj, fid, fid, People(ii), People(jj), Total

el | am not sure Excel has

Print i, People(i)
Next i

S e itted ti
e eret X st fitted a negative
Fori=1Ton

Print #2, i, People(i)

el exponential

End Sub
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Here is one where | have run it 10 million times
with 1000 people

In fact.. If | haven’t been able to do it, this slide
will be blank but note that what happens is the
uniform distribution changes to something like
a normal distribution and then to a negative
exponential

And it takes a little bit of experimentation to

know how to run these hypothetical problems
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Scaling: How Entropy Generates Power

Laws

In essence | can modify the random model a little
bit to show that if we let people accumulate
more and more wealth —relax the
conservation law then what we get is an
inverse power law but the immediate way is to
maximise entropy subject now to the following
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We maximise entropy subject to a normalisation
constraint on probabilities and now a

logarithmic cost constraint of the form

Max H =-)p;logp,
i=1

Subject to Z p =1 Z p;llogc; = C

1
Note the meaning of the log cost constraint. If

we do all this we get
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If we do all this we get the following model
where we could simply put logc, into the

negative exponential getting

_exp(-4logc;) G
P > exp(-Alogc;) = b e

A power law.
But this is not the rank size relation as in the sort

of scaling we looked at last week. Why not?
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Cost and Size

Entropy-maximising location models tend to look
at location probabilities as functions of cost
and benefit of the locations.

Scaling models of city size or firm size or income
size tend to look at probabilities of those sizes
which have nothing to do with costs

Thus the problems are different
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We must maximise entropy with respect to
average city size not average locational cost
and then we get the probabilities of locating in
small cities much higher than in large cities as
city size is like cost.

It is entirely possible of course for probabilities of
locating in big cities to be higher than in small
cities but as there are so many more small

cities than big cities, small ones dominate.
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So to look at the city size problem, we must

substitute for cost with size as

o _ _ewAlogR) o R
'~ Y exp(~4log ) YR

And then we take the frequency as p; and then

the size as P, form the counter cumulative
which is the rank and then twist the equation
round to get the rank size rule — and hey presto

we can connect up with slide 17 of last week
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Last things

Basically | have actually worked out some of
these equations for Greater London population
data. These are in the working paper | sent the

link around and in my chapter
Refs: http://www.casa.ucl.ac.uk/publications/workingPaperDetail.asp?ID=154
and Batty, M. (2009) Cities as Complex Systems: Scaling, Interactions,
Networks, Dynamics and Urban Morphologies, In R. Meyers (Editor)
Encyclopaedia of Complexity and Systems Science, Volume 1, pp 1041-
1071, Springer, Berlin, DE.
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