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ABSTRACT A class of linear models is developed in which activities are derived from
transformations of each other and exogenous activities. The models are illustrated using
spatial distributions of population and employment. Reduced forms are derived and the
influence of different transformations on spatial model solutions is explored in terms of
the balance of exogenous and endogenous variables, and through analysis of eigenstructures.
Ten modet types including the traditional Lowry model and Coleman’s model of social
exchange, are applied to an eight zone representation of Melbourne and the analysis is
used to show how model solutions can be spatially independent of their inputs.

1. INTRODUCTION

Urban models are frequently characterised as being predominantly structured
in linear or nonlinear terms, but in several contemporary developments both
linear and nonlinear styles of analysis are intermixed. In spatial interaction
modelling for example, models are usually derived through nonlinear optimisation
leading to nonlinear model forms while such models are coupled together to
form more general structures by means of linear accounting, subject to linear
constraints. Thus these models can be analysed using both linear and nonlinear
analysis, each type of analysis emphasising different properties of the model
structure,

The traditional Lowry model is the classic example. The model was first
stated by Lowry (1964) as an implicitly nonlinear structure. It was then developed
in linear terms by Garin (1966) and Harris (1966) using analogies with input-
output models, and then in nonlinear terms by Wilson (1974) who emphasised
the derivation of its spatial interaction components through entropy-maximising.
More recently, attention has been directed at coupling and solving the model’s
spatial interaction components in a more general nonlinear optimisation frame-
work in which the model’s linear structure is implicitly represented through its
constraints (Wilson, Coelho, Macgill and Williams, 1981).

Most recent work has, in fact, been directed to the nonlinear analysis of
such models. It is perhaps surprising that so little work has been concerned with
exploring the models’ linear structure, especially as such models appear more
structurally transparent, and easier to extend and adapt in linear terms. Moreover,
linear models have been developed extensively in regional science but hitherto
there have been few attempts to generalise this class of models to explore their
common properties. It is the purpose of this paper to present such a generalisation:
to explore the effect of model structure on performance in terms of the balance
of input and output variables and to clarify the question of choice of an
appropriate model structure. These ideas will be illustrated using linear urban
models in which activities are spatially distributed, although the ideas are also
applicable to input-output, social exchange and various demographic accounts-
based models.

The general model structure pertaining to this class is first stated and then
adapted to two activities, the spatial distributions of population and employment.
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Reduced forms are derived and various model types dependent upon different
spatial distributional assumptions and input variables are characterised, including
the Lowry model (Lowry 1964; Batty 1976) and Coleman’s (1973) model of
collective action based on the theory of social exchange. The effect of different
distributional assumptions is then explored using eigenstructure analysis which
gives a fairly comprehensive picture of the degree to which spatial solutions to
these models are determined by model structure, input data and particular
transformations. Applications to an eight zone model of Melbourne then serve
to give these findings some empirical credibility. This suggests that much more
research is required into invariance characterising spatial model solutions, the
choice of inputs and outputs in particular model applications, and the level of
resolution appropriate to any application. Although these issues pertain to the
linear urban models discussed here, they are of more general import, and by
way of conclusion, certain rules of thumb for good model design are presented.

2. A LINEAR FRAMEWORK FOR URBAN MODELS

Generalised Forms

To introduce the framework, first consider an activity y, distributed over n
zones or sectors, and two activities y; and x, distributed over m zones or sectors.
If y, and x, are Ixm row vectors, y, is a Ixn row vector and 4, is an nxm matrix
which transforms y, into y,, then the linear model can be written as

y=pnd +x. n

In a similar manner to Equation (1), it is possible to develop a chain of
relationships in which p, can be predicted as the sum of a transformation of y,-,
and exogenous variables x.. For all variables y. to be predicted however, the
chain must be closed; that is at some point, y. = y,. The simplest possible case
of Equation (1) is y, = y, which implies that m = n, and in this case Equation
(1) could represent the structure of a conventional input-output model. In this
context, it is necessary to examine the more general case where z > 2, and thus
a suitable example of the closed sequence involves another equation for y, given
as

NW=Eyd+x, (2)

where x, is a Ixn row vector and 4, an mxn transformation matrix.

Solutions to the system of equations in (1) and (2) are given by the following
reduced forms which result from substituting Equations (1) into (2) and (2) into
(1). These are

h=ndd:+ x4, + x, 3)
Vi=y A + x4, + x. 4)

In one sense, Equations (3) and (4) might be considered duals of one another.
Explicit solutions for y, and y, can be given by rearranging (3) and (4), but at
this stage, it is more appropriate to consider their solution in matrix split or
iterative form as

PO = POXAAY + (s + £) 3 (A 5)

P = PONAAY + (s + 2) 3 (A:A). ©)
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»(0) and y,(0), y:(f) and y(¢) represent the starting and iteration ¢ solution
vectors to y, and p, respectively, while (4,4,)° and (4.4,)° are nxn, and mxm
identity matrices.

Whether or not Equations (5) and (6) converge to unique vectors y, and y,
depends upon the properties of 4, and A.. In this form, these iterative solutions
refer to the static equilibrium framework based on Equations (1) to (4). However,
Equations (5) and (6) could refer to dynamic versions of (3) and (4) with fixed
inputs, and thus the framework developed here could easily be extended to cover
dynamic models, for example the manpower and educational planning models
of the type discussed by Bartholomew (1982). Furthermore, if there are no inputs
to these models, that is if x, = 0 and x, = 0, Equations (5) and (6) are similar
to those of a first order process which if 4, and 4, were stochastic matrices
would be a Markov process, equivalent to that developed by Coleman (1973).
These possibilities will be explored further in the sequel.

An Urban Model of Activity Allocation-Distribution

To develop this framework further, it is necessary to make specific assump-
tions about the types of distribution and transformation involved. Two urban
activities, employment e, i = 1,2, ..., nand populationp, j=1,2,..., m
are defined in spatial distributional terms so that

2e=1land 2p =1,
T 7

and these are reiated through

e = fa, + (1 - Bb, 0<g8<l. (7
a; is service and b; basic employment in /, normalised so that
Za‘r = Zb‘ = 1.

B is the ratio of service to total employment in the system.
Population is also considered as the sum of two components, internal
population g and external (or basic) population /;, which are defined so that

28 = 2h=1
J J
Population is then given by

p=vg+ (-9 O<ys<l, @8)

where ¢ is the ratio of internal to total population.

It is assumed that basic employment and external population are exogenous
variables equivalent to x, and x, defined earlier, and that service employment
and internal population are endogenous; service employment is modelled as a
linear function of population, and internal population as a linear function of
employment defined respectively as

Q= ;p}Bﬂa ;Bﬂc =1, &)

and
g,- = ZeiAu, ;:AU = 1. (10)
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(B;) and (A,,) are stochastic matrices which measure the demand by the population
in zone j for services in zone k, and the demand by employees in zone i for
housing in zone j respectively. These transformations are consistent with well-
established ideas concerning spatial interaction (Wilson 1974) and it is assumed
that each spatial transformation matrix is strongly-connected in the graph or
network-theoretic sense.

Equations (7) and (8) can now be written in linked form. Substituting for
a; in (7) from (9), and g; in (8) from (10) leads to

€ = ﬁ;P/B/k + (1 - B)b

and
D= ‘/’Z&Aij + (1 - Yh,

In matrix terms, these equations can be written as

e=fpB+(1-p)b (1)
and

p=ved+(l -Y)h (12)

Comparing Equations (11) with (2), and (12) with (1), it is clear that e = y,, p
=y, BB = A,, YA = A, (1 — B)b = x,, and (1 ~ Y)h = x,; thus the reduced
forms in (3) and (4) and the matrix iterative solutions in (5) and (6) apply. It
is, however, possible to say more about solutions to this model for the properties
of A, and A, have now been specified.

Solutions of the Urban Model
By analogy to Equation (3), the reduced form for employment in Equation
(11) is given as

e=yYPeAB+ (1 -y)h B + (1 - B)b. (13)

The three terms on the right hand side of (13) reflect service employment
generated indirectly from basic employment and external population (y8e 4 B),
service employment generated directly from external population (8(1 — ¥)k B),
and basic employment ((1 — 8) b). The ratios 8, (1 — ¢) and (1 — B) also
reflect the fractions of such employment in the model solution. In similar fashion,
the reduced form of Equation (12) is given as

P=VBpBA+ YUl - bd+(1-yh (14)

where ¥8p B A is the component of population associated with service employ-
ment, y(1 — B8)b A is the population directly associated with basic employment,
and (1 - )& is external population. Note that the ratios Y8, (1 — 8) and (1 -
¢) reflect the fractions of each of these components in the final solution.

The matrix iterative solutions of Equations (13) and (14) starting from
arbitrary but normalised vectors e(0) and p(0) can be stated by analogy to
Equations (5) and (6) as

e(t) = (¥B)Ye(0)(4 BY + [B(1 - ¥)h B + (1 — £)b] '2:‘:) (vBy (4 By (15)

and
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P(0) = (UBYPO)B AY + [W(1 - B)b A + (1 - Y)h) % (8 (B 4y. (16)

First we assume that 0 < Y8 < 1, in short-that exogenous inputs exist and
endogenous activity is generated from them, and then in the next section we
explore the special case where all activities are endogenously determined, y8 =
1. Thus for 0 < y8 < 1, (¢8) » 0 as t » oo, and thus the first terms on the right
hand side of Equations (15) and (16) converge to zero; the solutions thus depend
on the second terms involving the matrix summations. As 4 B and B A4 are
stochastic matrices, powers of these matrices are also stochastic, so convergence
of these summations depends on ¥8.

We remarked earlier that equations such as (15) and (16) can be regarded
as duals of one another; thus it is only necessary to illustrate results for one of
them, for the other can be determined from the equilibrium relations in Equations
(11) or (12). In the rest of this paper, we will only consider solutions to the
population equation, Equation (16). Then in the limit,

p=limp() = im [y(1 -~ M4 + (1 - VK] 3 WAy BAY, (17)

and as (yB8) (B 4) - 0 as ¢ » oo, the summation term in (17) is a converging
geometric matrix series. It is easily shown that

p=lmp)=[Y (1 -8)bA+(1 -kl -y8BA" (18)

which of course could have been derived directly from Equation (14). Using
Equation (18) in (11) leads to

e=P(1 -BbA+ (1 -yh[I-y8BA" B+ (1~pp,

and a dual form for p and e exists by taking e from the convergence of Equation
(15) and substituting this into Equation (12).

3. THE ELABORATION OF LINEAR MODEL STRUCTURES

The Markov Model

The results given in Equations (7) to (8) relate to the case in which each
activity is determined partly by some exogenous activity and partly as a
transformation of another endogenous activity. In the case of this spatial urban
model, basic employment might be considered as export orientated employment
in the traditional economic sense, or as employment whose location it is
impossible to model (Massey 1973). External population might reflect the same —
either population dependent economically on activity outside the region or that
whose location it is not possible to simulate, such as population located by some
public agency. It is, however, instructive to examine three other variants of this
model which reflect different balances of exogenous activity, thus different model
structures.

First there is the case in which there is no external population, that is where
¥ = 1. The resulting model is in effect one in which employment and population
are now a function only of basic employment, and the model in this form is
the conventional Lowry model as can easily be seen by making the appropriate
simplifications to Equations (11) to (18). The model in fact is the Lowry model
in its matrix form (Harris 1966; Garin 1966). Second, there is the case in which
there is no basic employment, that is where 8 = 1. In this case, external


Mike
Rectangle


10 PAPERS OF THE REGIONAL SCIENCE ASSOCIATION, VOL. 53, 1983

population is the driving force of the model and this, it might be argued, is
more appropriate for a model of a British New Town situation, say, where the
population is located in a planned fashion. This model is the basic population
equivalent of the Lowry model, and already the advantages of this general
framework are becoming apparent in enabling the logic of linear urban models
such as the Lowry model to be extended to other types of basic spatial determinant.
In the sequel, these two single exogenous input models together with the model
based on both inputs will be developed, but another interesting case of much
greater analytic value emerges from the model with no exogenous inputs, that
is where all population and employment are determined endogenously, where
ve = 1.

It is worth examining this case in more detail. Equation (16) now becomes

P() = p(0) (B A) (19)

and the solution depends on the behaviour of (B AY. B A is a stochastic matrix
and assuming again that B A is strongly-connected which is an essential
assumption of the spatial interaction transformation in any case, (B 4) converges
to an idempotent matrix Z in which each row is identical. Then

p = lim p(t) = p(O)B A) = p(0)Z. (20)

From Equation (20) it is clear that p, the steady state population distribution,
is equivalent to each identical row of the steady state matrix Z. As Z is
idempotent, multiplication of (20) by (B A4) leads to

P=pBA,

which is equivalent to Equation (14) with ¢8 = 1. Clearly the steady state
population distribution is the steady state of a discrete Markov process. In similar
fashion, it can be shown that (4 B) converges to an idempotent matrix Q as
t » oo and using the same logic as above, the steady state employment & is given
as

€=2A48B.

Furthermore, when n = m, Q@ = Z B and Z = Q A; in short, when ¢8 = 1,
Equations (15) and (16) represent dual Markov processes.

In this form, the model is equivalent to Coleman’s (1973) model of collective
action in which the equilibrium can be interpreted as the outcome of an exchange
process. In fact, an exchange interpretation could quite easily be developed for
urban models such as these in the same spirit as that developed by Coleman,
thus enabling insights into these types of models to be enriched further (Batty
1981). Moreover the framework developed here shows how the Coleman model
might also be seen as a special case of a more general model of collective action
in which such action is seen as being determined by both endogenous and
exogenous factors. However, such interpretations are beyond the immediate
concern of this paper.

The Steady State Model

The model without exogenous inputs, referred to hereafter as the Coleman
model, although interesting in its own right as a distinct model structure in the
framework, is also useful in that it highlights the fact that the transformation
matrix (B AY converges towards the idempotent matrix Z as the number of
iterations of the process of solution increases. As any stochastic row vector
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multiplied by this idempotent matrix gives a row of this matrix, this implies
that in the case where the transformation matrix is or becomes idempotent, the
exogenous vector then has no influence on the resulting solution. This is the
condition of invariant distributional regularity identified by Schinnar (1978).

To demonstrate this idea, consider the case where the matrix B A is already
idempotent, that is

BA=BAY=2,t>0.

Then for the case where 0 < ¢ < 1, the matrix series in Equation (17) can be
written as

=1 o
lim 3 (W) (B AY = I+ Z 3 (),
=1+ yB(1 - yf)"' Z.
Using Equation (21) in (17), the equilibrium population referred to as the
population from the steady state model, now becomes
P=1-8bA+(1-h[I+y6(1 - yp)'2),
which simplifies, using the fact that each row of Z is p, to

P=yBp+ Yl -BbA+ (1 - Yh 22)

Equation (22) shows that population j is a function of the input data, and of
the steady state p and this implies that the input has no influence on the
endogenously generated population.

A similar result holds for employment. Substituting Equation (22) into (11)
gives

@n

E=yYBbAB+ Bl -y)hB+(1-pH

NowasBA=Z,andABA=AZ=2Z=QA,then 4 B = Q, and the steady
state employment can now be written as

é=ype+ (1 -YhB+(1 -0, (23)

which has the same structure as Equation (22). From Equations (22) and (23),
it is clear that the degree to which § approaches  and é approaches & depends
on the ratio y8. Three types of model based on Equations (22) and (23), namely
O<y¢y<land0 < B <1;¢ =1;and 8 = |, are developed in the applications
presented below.,

Invariant Distribution and Idempotence in Transformation

There are several different ways in which the matrices B 4 and 4 B may
be idempotent. It is clear that if 4 or B is idempotent, then either of their
products is idempotent. Then if 4 is idempotent, that is if the probability of
residing in any place is independent of the place of employment, Equation (22)
simplifies to

P=vyp+ (1 -

while if B is idempotent, that is if the probability of demanding services in any
place is independent of the place where that demand is generated, Equation (23)
simplifies to

é=pe+ (1~ pb.
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If both 4 and B are idempotent, then both Equations (22) and (23) simplify in
the manner shown.

Another possible effect of idempotence which will be developed in the sequel
involves the situation where

BA=BA=1,1t>0.
In this situation, Equation (17) simplifies to

W1 -8 (1 -y
Pl tu—we™ 24)

and using Equation (24) in (11) gives

é_(l__’l’)hB.,.(l;ﬁ)b

(1 -yB) (1 -yB)

In this case, the equilibrium population and employment distributions are simply
proportional to the appropriately scaled fraction of each exogenous distribution
of activities. Clearly this situation can arise in several ways. For example if both
B and A are identity matrices where m = n then this implies no spatial interaction
in the system whatsoever; that is employees live and work in the same zone and
demand their services there. The same situation can also arise if the patterns of
spatial demand for housing are the inverse of those for services, that is where 4
= B~' and B = A~'. In all these cases, B 4 = I and 4 B = I, but these patterns
and the resulting identical locational distributions can clearly arise under very
different conditions of spatial interaction.

In the applications which follow in a later section, three types of model will
be developed: the model based on actual interaction matrices 4 and B given in
Equations (13) and (14), the model based on the steady state interaction patterns
derived from Z = lim (B A4) and Q = lim (4 B) in Equations (22) and (23),

[ ol
and the model based on Equations (24) and (25) in which it is assumed that
this pattern is associated with no interaction or self cancelling interaction. For
each of these models, three model structures will be tested; first where both
inputs are present (0 < ¢ < 1 and 0 < 8 < 1), second where basic employment
is the only input (¢ = 1), and third where external population is the only input
(8 = 1). Finally the Markov model with no inputs, where y8 = 1, Coleman’s
model, will be developed, thus giving 10 different models in all to be explored.

(25)

4, THE MEASUREMENT OF DISTRIBUTIONAL INVARIANCE

Spectral Decomposition of a Stochastic Madtrix

In the previous section, we indicated that in the absence of input data, the
ultimate distribution of activities in the model would depend on their steady
state distribution matrices Z and Q. In the case where there are exogenous inputs
and where the transformation matrices are already in the steady state, the
solutions can be derived as a weighted sum of the steady state and input
distributions. This suggests that in the case of the general model, it may be
possible to measure formally the degree to which the distribution matrices B A
and A B approach the steady state when solutions to the model are derived.

To demonstrate the relationship, we will use B 4 and its steady state Z =
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hm (B AY. Assuming that the eigenvalues of B A4 are all distinct, the matrix B
A can be represented as

BA=R"AS= 2 AT, = 2 A (26)

where R is an mxm matrix of right-hand eigenvectors of B 4, [r], S is an mxm
matrix of left-hand eigenvectors [s], and A is an mxm diagonal matrix of the
m eigenvalues of B 4 where each eigenvalue A, on the diagonal A, is associated
with the eigenvectors r, and s;. ¥, = rs; and this matrix is defined as the spectral
set. Assuming that the scales of s; and ¢l are chosen so that s/ = 1, then ¥
satisfies the relations _

ViV, =0if2# j; ViV,=V,ife=jand 3 ¥V, = I. 27
J=1

These results are taken from Bailey (1964). (T indicates the matrix transpose
operation.)

The decomposition defined in Equations (26) and (27) enables the powers
of B A to be expressed in simple form as

(BAy = 15_"1, A (28)

From the Perron-Frobenius theorem (see Heal, Hughes and Tarling 1974), a
stochastic matrix such as B 4 has a dominant eigenvalue equal to 1, and all
other eigenvalues of the matrix have an absolute value less than 1. Assuming
these values are distinct (slight perturbation of the values in B 4 will normally
ensure this within an acceptable error bound for B A), then it is possible to
order the eigenvalues and eigenvectors of B 4 so that M,(=1) > | A2 | > | A5 |
>...> | An |. In the case of the dominant eigenvalue X, = 1,

MVi=\Nrls, =17 = Z, (29)

because the right-hand eigenvector associated with A\, = 1 must be the unit
vector, that is B 4 17 = 17 and s, represents the steady state vector associated
with B 4, that is s, = s, B A, the left-hand eigenvector. Using Equation (29) in
(28), it is possible to write the powers of B A4 as

BAy=Z+ jﬁ XV, (30)

where it is clear that in the limit as ¢ » oo, (B 4) » Z, and i A ¥, - 0. Thus

the difference between the matrix B A and its steady state ha:s-zthe simple form
BA-2Z-= ,.2 NV,

and this difference converges to 0 as ¢ - co.

Spectral Representation of a Linear Urban Model

It is now possible to represent the matrix series which arises in the iterative
solution to the model in Equation (17) using (28) as
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Swer@ar=3 3wy, (1)

ra) je]

Then as |A;| < 1 and 0 < y8 < 1, the series in (31) can be simplified as follows
S BN = (1 - van)
and
> WBNY = W 3 (BNY = 98N, (1 - ¥AN)™.
Equation (31) can now be written as
2 wey B4y = 3 (- veny,

=1+ 208\ (1 - BN, (32)
= 14981 - V8 Z+ 3 ¥8M1 = ¥ONY,

Using Equation (32) in Equation (17) enables the general model to be written
as

p=11-BbA+ (1 -+ 8 - ¥v8)"'2 (33)
+ ,% ¥BA(1 ~ ¥BN) 'V,

which using Equations (21) and (22) simplifies to
P=vBD+ W1 = )b A+ (1 - PRI + i U8, (1 = Y8 V]
=P+ - b A+ (1~ w:uj_iz VA1 = VBNV,

The second term on the second line of Equation (34) is the difference p — §
and this is the percent deviation of p from the steady state distribution §.
Equations (33) and (34) represent a new decomposition of the traditional linear
urban model, and the same logic can be easily transferred to any such model
in which the transformation of one endogenous activity into another can be
separated into a scale and distribution effect. This of course limits the usefulness
of spectral decomposition for input-output analysis but it is highly relevant to
urban models such as the Lowry model (Batty 1979). Equations for e analogous
to (33) and (34) can also be derived and it is possible to derive dual relationships
between the spectral sets of B 4 and 4 B. As these are not of central relevance
here, they will not be formally presented.

(34

Distributional Differences between Model Types
The decomposition in Equation (34) can now be simplified as follows. First
set the inputs and the deviation from the steady state matrix Z as

w=y¥(l-8bA+ (1 - A
and
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= 1_22 ¥BM1 = ¥BA)'V

Equation (34) now becomes
p=yYp+tw+wZ, (35)

which is referred to as the canonical form of the linear urban model. It is the
sum of a steady state effect 85, an input effect w of order (1 - ¢8), and a
deviation from the steady state through compounding of inputs w 2.

Differences between the population distributions of the three models p,
and p, as well as the Markov model p can now be stated. Then p - p from
Equation (35) is given in terms of the three effects as

Pp-P=WB-1p+w+w3i

which clearly sums to zero, as the first two terms are of order Y8 — 1 and 1 -
¥8 which cancel, and w Z is a deviation. The difference p - p is only in terms
of these deviations from the steady state

p_ﬁ=wz’
while p - p can be given in terms of the three effects

P-P=VBp+wZ —yp(l —yB)" w.

Other differences p — p, p — p and § — p are just functions of the steady state
and the input data for the deviations w = are only associated with the full
model. Analogous relationships for e, é, & and & can be derived in dual form or
as functions of the relationships given here.

5. APPLICATIONS

Comparison of Model Types

To demonstrate the degree of spatial invariance contained in the different
model structures introduced above, these models have been applied to an eight
zone representation of the Melbourne metropolitan region. In this case, the
observed pattern of employment is highly concentrated in the CBD and sur-
rounding zones while the distribution of population is much more evenly spread.
Basic employment (employment in primary and manufacturing industries) is
more evenly spread than total employment but is concentrated in the CBD and
the west of the city. External population, measured as population in public
housing, is considerably more concentrated than total population, in the CBD
and in the west of the city like basic employment. In this case, » = m = 8 and
the patterns of observed population and employment are shown in map 1 of
Figure 1. The distribution of basic employment and external population are not
shown separately but in fact their distribution is equivalent to employment in
map 10 and population in map 11, both illustrated as part of Figure 3. This
example, although at a coarse level of spatial resolution, is a reasonably realistic
one in that it is typical of the differences in activity distribution charactertising
many western cities, and models of these cities.

As there are 11 different distributions of population and employment to
compare (from 10 model types together with the observed distributions), these
have been arranged in the following order, using indices ¥, v= 1,2, ..., 11
to represent the particular distribution in question. Index 1 refers to the observed
distributions while indices 2, 3 and 4 refer to the full model based on actual
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interaction: 2 refers to the model with both inputs, 3 to that with only basic
employment (the Lowry model) and 4 to that with only external population.
Model 5 is that based on no exogenous inputs, that is the Markov or Coleman
model. Indices 6, 7 and 8 refer to the steady state model in Equations (22) and
(23); 6 is the full model with both inputs, 7 the model with only basic employment,
and 8 the model with only external population. Finally, indices 9, 10 and 11
refer to the models based on ‘no interaction, given in Equations (24) and (25).
Model 9 is the full model with both inputs, 10 with only basic employment and
11 with only external population. The maps 1-11 which are produced in Figures
1 to 3 refer to population and employment distributions from each of these
model types. In the sequel, any value of population p; or employment ¢; will be
superscripted by its model type index, %, v where necessary.

As a first step in evaluating and comparing the 10 models and the observed
distributions, the ratios of endogenous to exogenous activity — population and
employment — associated with each model are presented in Table 1. This table
shows immediately the differences in model structure in terms of the presence
or absence of inputs and outputs as well as the overall weight of exogenous and
endogenous variables in determining the ultimate distribution of population and
employment. From Table 1, it is clear that the 10 model types cover a wide
range of assumptions concerning the effect of input and output variables, from
models based entirely on input data — models 9, 10 and 11 to that based on
no input data but only on the effect of the spatial transformations — model 5.
Note also that model 10 predicts employment as entirely basic employment,
and model 11 population as entirely external population.

It is also possible to speculate on similarities and differences between the
models’ predictions, from the prior assumptions embodied in Table 1. Employ-
ment and population have almost identical determinants in terms of the
importance of inputs and outputs, and thus it is to be expected that similarities
and differences between models will be consistent in terms of population or
employment. Then there are the strong similarities between the actual interaction
models (2, 3 and 4) and the steady state interaction models (6, 7 and 8), and
differences between these will be entirely in terms of the differences of the
transformation matrices from their steady states. Because external population is
such a small fraction of total population, models based on this as the only input
(models 4 and 8) are likely to be similar in their predictions to model 5, the
Coleman model, which is based on no inputs. These models too are likely to
be fairly different from the others, as will be the models based on no interaction
in which the inputs entirely determine the predictions (that is, models 9 and 10
which are similar in themselves and model 11).

The predicted distributions of population and employment from these models
are presented in map form in Figures 1 to 3. In Figure 1, the observed distributions
and the four models # = 2, 3, 4, 5 (that is the model based on both inputs, the
two models based on single inputs, and the Markov model based on no inputs)
are presented. Models 2 and 3 are similar to each other and to the observed
distributions, while models 4 and 5 give a much stronger concentration of
employment in the CBD. However, the pattern of population generated by these
models is close to the observed pattern. Figure 2 presents the three steady state
models, models 6, 7 and 8, which on casual inspection appear close to their
actual interaction equivalents, models 3, 4 and 5. This indicates that the effect
of the transformation matrices is close to their steady state forms. Figure 3
presents three more extreme models, models 9,10 and 11 based on the ‘no
interaction’ assumption in which population and employment are direct functions
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MELBOURNE

DISTRIBUTIONS OF
EMPLOYMENT AND POPULATION

l] 41.8
0.0

i2

PERCENTAGE EMPLOYMENT-({)
AND POPULATION-(2)-IN "00"S

OBSERVED EMPLOYMENT AND POPULATION DATA

BASIC EMPLOYMENT AND BASIC POPULATION MODEL:OBSERVED INTERACTION
BASIC EMPLOYMENT MODEL:OBSERVED INTERACTION

BASIC POPULATION MODEL:OBSERVED INTERACTION

STEADY STATE MARKOV MODEL WITH ND BASIC INPUTS:OBSERVED INTERACTION

FIGURE 1. Observed and Predicted Distributions of Employment and
Population for the Models Based on Observed Interaction Patterns
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MELBOURNE

DISTRIBUTIONS OF
EMPLOYMENT AND POPULATION

h 44,9
0.0

12

PERCENTAGE EMPLOYMENT-(1)
AND POPULATION-(2)-IN "0D0"S

G  BASIC EMPLOYHENT AND BASIC POPULATION MODEL:STEADY STATE INTERACTION
7 BASIC EMPLOYMENT MODEL:STEADY STATE INTERACTION
8  BASIC POPULATION MODEL:STEADY STATE INTERACTION

FIGURE 2. Predicted Distributions of Employment and Population for the
Models Based on Steady State Interaction Patterns

of the associated input data. Models 9 and 10 generate distributions of total
employment and population which are all close to the distribution of basic
employment, while model 11 predicts much more concentrated distributions
equivalent to the distribution of external population. Although we have referred
to models 9, 10 and 11 as the ‘no interaction’ case, this is not, strictly speaking
correct in that we are not assuming 4 = B = I. All we assume isthat BA = I
and 4 B = I, situations which can arise in many ways. However, it is possible
to see the cases of actual ‘no interaction’ for in these cases, population in model
10 would have an identical distribution to employment and employment in
model 11 an identical distribution to population.

It remains to make more precise the casual comparisons emerging from
Figures 1 to 3. Accordingly, we have computed percent differences between the
various distributions for each pair of models. Then the percentage difference 4.,
between models u and v for population is given as

100 -p
=3 |7} PJ|.

0, =
m 5 )14
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MELBOURNE
DISTRIBUTIONS OF
EHPLOYMENT AND POPULATION

h 27.9
0.0

12

PERCENTAGE EMPLOYMENT-(1)
AND POPULATION-(2)-IN "00'S

O BASIC EMPLOYMENT AND BASIC POPULATION MODEL:NO INTERACTION
1@ Basic ENPLOYMENT MODEL:ND INTERACTION
14 BASIC POPULATION MODELIND INTERACTION

FIGURE 3. Predicted Distributions of Employment and Population for the
Models Based on the ‘No Interaction’ Type Assumption

and the percent difference for employment 6., is given as
100 lef - el
"2

These percentages are presented in Table 2 for the 11 distributions of population
and employment respectively. These tables bear out previous observations. In
terms of the observed situation, the models in which basic population is the sole
determinant, and those which embody the ‘no interaction’ assumption perform
least well. The Markov model is not close to the observed situation either but
the steady state and actual interaction models where basic employment dominates,
are close to the observed situation. This suggests that the basic employment
input is a major determinant of a well-fitting model of this particular system, a
point which will be made cogent in the next section. Table 2 contains a large
quantity of comparative information, and read with Figures 1 to 3 provides a
rich source for evaluating these various models which can be further developed

bur =
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TABLE 1.

MODEL TYPES, u

2 acTuaL R

3 { INTERACTION $=

S _ MARKOV (Coleman) 8 = 1

S1stEADY sTATE =~ 0¥ <!

7 { INTERACTION v

9 0<yB <1
10 £ NO INTERACTION ¢ = 1

Classification of Model Types by Weight of Variables

POPULATION
Endogenous Exogenous
Service Basic External
Population Population Population
17:} w1 - B (-9
0.6153 0.3506 0.0341
0.6371 0.3629 0
0.9659 0 0.0341
1 0 0
0.6153 0.3506 0.0341
0.6371 0.3629 0
0.9659 0 0.0341
0 09114 0.0886
0 1 0
0 0 1

EMPLOYMENT
Endogenous Exogenous
Service Basic External
Employment Employment  Employment
17 -8 8(1 - ¥)
0.6153 0.3629 0.0217
0.6371 0.3629 0
0.9659 0 0.0341
1 0 0
0.6153 0.3629 0.0217
0.6371 0.3629 0
0.9659 0 0.0341
0 0.9436 0.0564
0 i 0
0 0 1

114

€861 ‘€S "TOA ‘NOILVISOSSV FONFIOS TVYNOIDIY FHL 40 S¥Advd
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TABLE 2. Percentage Differences between Model Types
PERCENT DEVIATIONS IN POPULATION 4,,
vas) 2 3 4 5 6 7 8 9 10 11

1 0 13 13 22 23 14 14 23 14 17 69
2 13 0 3 14 15 1 4 14 21 21 62
3 13 3 0 13 14 2 1 13 22 22 65
4 24 15 14 0 k) 13 13 1 38 38 68
5 25 17 16 3 0 15 15 2 40 40 72
u= 6 14 ! 2 12 14 0 2 13 22 22 63
7 14 4 l 12 13 2 0 12 23 23 66
8 24 1S 14 1 2 14 13 0 38 8 6
9 17 21 22 34 36 22 23 35 0 6 64
10 19 22 22 35 37 23 23 36 7 0 7
11 156 156 162 178 18 159 165 179 127 139 0
PERCENT DEVIATIONS IN EMPLOYMENT ¢,
vel 2 3 4 5 6 7 8 9 10 1
1 0 13 13 39 39 15 15 39 30 34 4
2 14 0 1 30 30 2 3 30 44 49 38
3 14 l 0 30 30 2 2 30 44 49 38
4 71 St 51 0 2 48 48 0 125 133 33
5 72 51 51 2 0 49 49 1 127 134 35
u=6 16 2 2 29 29 0 1 29 46 51 37
7 16 3 2 29 29 1 0 29 46 51 38
8 71 51 51 0 1 48 48 0 126 133 34
(9) 26 38 38 63 63 39 39 63 0 4 65
1

30 42 42 67 67 43 43 67 4 0 69
78 62 63 43 45 62 62 43 125 132 0

by the reader. Note, however, that the matrices in Table 2 are not symmetric
for the base of comparison between any pair of models depends on the first
model in the pair.

Spatial Invariance and the Effect of Model Structure

To take the analysis one stage further, it is worth exploring in quantitative
terms how close the tranformation matrices are to their steady states, and how
the predicted distributions vary as the balance between endogenous and exogenous
activity changes. Comparing the predicted distributions of population and
employment for the actual interaction models with their associated steady state
interaction counterparts reveals extremely small percentage differences; that is,
for population and employment respectively in models 2 and 6, these are 1.48
and 2.35; for models 3 and 7, these are 1.20 and 1.37; and for models 4 and 8,
these are 0.69 and 0.43. We can compare these with the percentage difference
between the matrix B A and its steady state form Z given as

|52
_1 >=
P m’ [ Zkg
In this example, p is 31.15 which is considerably different from the ultimate
percentage differences between the locational distributions.
However, it is necessary to take account of the convergence of B 4 towards
Z for only a small fraction of the difference B 4 — Z will be transmitted to the
ultimate distributions. Thus a more useful statistic is based on the percentage
differences between the actual compounded effects of B 4 given by {[I - y8 B
AJ™' = I} and the steady state effects given by ¢8(1 — ¢8)~'Z. The statistic which
is based on Equation (32) is given as
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m

VBN — ¥BN) Vi
100 j=2
2

m g ¥B(1 = ¥B)"' Zy

The value of Q is 8.94 which implies that there is about a 9 percent difference
between the actual spatial transformation of the exogenous inputs into their
ultimate form and the transformation in the steady state form which is inde-
pendent of such inputs. On aggregation of these differences to derive locational
czlistributions, the percentage difference will thus be reduced to an order of 1 or
percent.

To complete this analysis it is worthwhile examining the same effect but
excluding the actual spatial transformations contained in the eigenvectors of BA.
Then the ratio

Q=

> UBM1 = B!

_ 100 =2
w= 10 =

gives the value of 31.14 which is close to the original percentage difference
between the matrices B 4 and Z. In other words, it is the similarities between
the components of ¥, and Z rather than their strength which determines their
effect. This can also be seen by examining the vector of eigenvalues of B 4 given
as

[A] = [1.00, 0.26, 0.17, 0.11, 0.09, 0.04, 0.03, 0.02]
where the eigenvalues are all real and positive but the ratio
s N
=z A

is now of the order of 70 percent. However, it is easy to see that the eigenvalues
A, j # 1 converge quickly towards zero in the iterative solution to the model,
and measures which link these values to particular stages of the solution have
been used to measure convergence to the invariant solution (Batty 1979).
Considerable research, however, remains to be done in developing this type of
analysis in linear urban modelling, and this demonstration can only be regarded
as a first attempt to explore the problem.

To complete this analysis, the full model given in Equations (13) and (14)
has been solved for a series of values of ¢ and 8 in the range 0 to 1. The
population and employment vectors p and e from each solution have been
compared with their observed distributions, with the appropriate steady state
distributions § and é computed for each set of values of ¥ and 8, and with the
Markov solutions § and é&. Values of ¢ and 8 at regular increments of 0.1 in the
range 0 to 1 have been selected, thus giving 11 values of each ratio, a total of
121 varieties of each model to apply. For the actual interaction and steady state
models, the extreme values of ¢ and 8, thatis¢ = 0, 1: 8 = 0, 1 give the same
solutions: when ¢, 8 =0, p=p=Mhe=é=b;wheny,8=1,p=p=pe
=é=¢@wheny=1andf=0,p=p=bAd,e=é=>b,andwheny =0, 8
=1p=p=h e=é= h B. Thus the range over which these models are solved
includes the no interaction and Markov models developed in an earlier section.

Response surfaces plotted as contours of the percentage differences between
various model solutions, observed distributions and steady state model types are
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illustrated in Figure 4. In Figures 4(a) and (b) these differences are shown in
terms of the observed distributions and these surfaces indicate the set of values
which provide a model with the closest fit to the observed distributions. For
population, the best model is that with no external population and with the
ratio of service to total employment about 0.4. This is close to that observed
and suggests that the Lowry model is most suitable for this example. In terms
of employment, however, the best model is that with ¢ =~ 0.7 and 8 = 0.5. We
have not taken this type of analysis any further but the notion of selecting the
best type of model in terms of the balance of endogenous to exogenous variables
is a further spinoff from developing a general framework such as this for linear
urban models.

The substantial range of percentage differences between predicted and
observed distributions (from 70 to 10 percent for population) is not repeated
when the predictions based on actual and steady state interactions are compared
in Figures 4(c) and (d). Here the greatest percent difference is only about 4
percent and this bears out the fact that the input assumptions are obviously
more critical in the spatial variation in the model’s solutions than the spatial
transformations. Finally a comparison between model predictions and the steady
state distributions from the Markov model are presented in Figures 4(e) and (f).
Here the range of variation is quite substantial (from 0 to over 130 percent) and
this once again indicates that the existence of inputs is a major determinant of
spatial distribution. These points have some significance for model design.

6. CONCLUSIONS

One obvious rule in applying the urban models developed here to spatial
distributions relates to partitioning such distributions so that endogenous and
exogenous population and employment distributions are radically different. This,
it has been argued, will ensure a meaningful spatial transformation of activities
into one another. However, as shown here, if such transformations are close to
their steady states, then it is the transformations rather than any input distribution
which are significant. Furthermore, if the input activity is only a small fraction
of the total and if the transformation is near the steady state, the model is close
to the endogenous Markov version. In contrast if the input data is a large fraction
and the transformations far from their steady states, the solutions will be quite
sensitive to the influence of both these distributions. This suggests that there is
no a priori set of rules which indicates how much or how different input
distributions should be from one another, but that the overall weight, their
distribution and the nature of their spatial transformation within the model
should all be considered together to judge the quality and non-triviality of such
spatial models.

The analysis introduced here, partwularly that involving the spectral decom-
posmon of spatlal transformations, is very much an initial foray into the question
of invariance in model solutions. This is part of a broader questicn concerned
with the extent to which spatial distributions are averaged’ on transformation,
a question which hitherto has received little attention in spatial interaction
modelling and which pertains to both linear and nonlinear model representations.
In future work, such questions will be developed in greater detail with the
ultimate intention of deriving statistics from spectral or variance analysls which
will provide less ambiguous indicators of the importance of invariance than
those used here. This, together with further applications of the models in this
framework to nonspatial examples, represent the main lines for future research.
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FIGURE 4. Comparisons of Model Types Over the Range of Assumptions
Concerning Weight of Inputs
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