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An important issue in the study of cities is defining a metropoli-
tan area, because different definitions affect conclusions regarding
the statistical distribution of urban activity. A commonly employed
method of defining a metropolitan area is the Metropolitan Statis-
tical Areas (MSAs), based on rules attempting to capture the notion
of city as a functional economic region, and it is performed by using
experience. The construction of MSAs is a time-consuming process
and is typically done only for a subset (a few hundreds) of the most
highly populated cities. Here, we introduce a method to designate
metropolitan areas, denoted “City Clustering Algorithm” (CCA). The
CCA is based on spatial distributions of the population at a fine
geographic scale, defining a city beyond the scope of its admin-
istrative boundaries. We use the CCA to examine Gibrat’s law of
proportional growth, which postulates that the mean and standard
deviation of the growth rate of cities are constant, independent of
city size. We find that the mean growth rate of a cluster by uti-
lizing the CCA exhibits deviations from Gibrat’s law, and that the
standard deviation decreases as a power law with respect to the
city size. The CCA allows for the study of the underlying process
leading to these deviations, which are shown to arise from the
existence of long-range spatial correlations in population growth.
These results have sociopolitical implications, for example, for the
location of new economic development in cities of varied size.
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I n recent years there has been considerable work on how to
define cities and how the different definitions affect the sta-

tistical distribution of urban activity (1, 2). This is a long-standing
problem in spatial analysis of aggregated data sources, referred
to as the “modifiable areal unit problem” or the “ecological fal-
lacy” (3, 4), where different definitions of spatial units based on
administrative or governmental boundaries give rise to inconsis-
tent conclusions with respect to explanations and interpretations
of data at different scales. The conventional method of defin-
ing human agglomerations is through the Metropolitan Statistical
Areas (MSAs) (1, 2, 5–7), which are subject to socioeconomi-
cal factors. The MSA has been of indubitable importance for
the analysis of population growth, and is constructed manually
case-by-case based on subjective judgment (MSAs are defined
by starting from a highly populated central area and adding its
surrounding counties if they have social or economical ties).

In this report, we propose a way to measure the extent of human
agglomerations based on clustering techniques by using a fine
geographical grid, covering both urban and rural areas. In this
view, “cities” represent clusters of population, i.e., adjacent pop-
ulated geographical spaces. Our algorithm, the “city clustering
algorithm” (CCA), allows for an automated and systematic way of
building population clusters based on the geographical location of
people. The CCA has one parameter (the cell size) that is useful for
the study of human agglomerations at different length scales, sim-
ilar to the level of aggregation in the context of social sciences. We
show that the CCA allows for the study of the origin of statistical
properties of population growth. We use the CCA to analyze the
postulates of Gibrat’s law of proportional growth applied to cities,
which assumes that the mean and standard deviation of the growth
rates of cities are constant. We show that population growth at a
fine geographical scale for different urban and regional systems at

country and continental levels (Great Britain, the United States,
and Africa) deviates from Gibrat’s law. We find that the mean
and standard deviation of population growth rates decrease with
population size, in some cases following a power-law behavior.
We argue that the underlying demographic process leading to the
deviations from Gibrat’s law can be modeled from the existence
of long-range spatial correlations in the growth of the popula-
tion, which may arise from the concept that “development attracts
further development.” These results have implications for social
policies, such as those pertaining to the location of new economic
development in cities of different sizes. The present results imply
that, on average, the greatest growth rate occurs in the smallest
places where there is the greatest risk of failure (larger fluctua-
tions). A corollary is that the safest growth occurs in the largest
places having less likelihood for rapid growth.

The analyzed data consist of the number of inhabitants, ni(t), in
each cell i of a fine geographical grid at a given time, t. The cell size
varies for each dataset used in this study. We consider three dif-
ferent geographic scales: on the smallest scale, the area of study is
Great Britain (GB: England, Scotland and Wales), a highly urban-
ized country with a population of 58.7 million in 2007, and an area
of 0.23 million km2. The grid is composed of 5.75 million cells of
200 m by 200 m (8). At the intermediate scale, we study the USA
(continental United States without Alaska), a single country nearly
continental in scale, with a population of 303 million in 2007, and
an area of 7.44 million km2. The original USA data consists of
59,456 sites defined by Federal Information Processing Standards
(FIPS) accociated with a corresponding population provided by
the U.S. Census Bureau (9), which is then coarse-grained to a grid
of 2 km by 2 km. Therefore, the analyzed datasets of Great Britain
and the United States are populated-places datasets, with popula-
tion counts defined at points in a grid. Because there could be some
distortions in the true residential population involved at the finest
grid resolution, we perform our analysis by investigating the sta-
tistical properties as a function of the grid size by coarse-graining
the data as explained in Information on the Datasets. At the largest
scale, we analyze the continent of Africa, composed of 53 coun-
tries with a total population of 933 million in 2007, and an area of
30.34 million km2. These data are gridded with less resolution by
0.50 million cells of approximately 7.74 km by 7.74 km (10). More
detailed information about these datasets is found in Information
on the Datasets (all the datasets studied in this article are available
at http://lev.ccny.cuny.edu/∼hmakse/cities/city_data.zip).

Results
Fig. 1A illustrates operation of the CCA. To identify urban clus-
ters, we require connected cells to have nonzero population. We
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Fig. 1. (A) Illustration of the CCA applied to a sample of gridded population
data. In Upper Left, cells are blue if they are populated (n(i)

j (t) > 0), otherwise,

if n(i)
j (t) = 0, they are white. In Upper Right, we initialize the CCA by select-

ing a populated cell and burning it (red cell). Then, we burn the populated
neighbors of the red cell as shown in Lower Left. We keep growing the cluster
by iteratively burning neighbors of the red cells until all neighboring cells are
unpopulated, as shown in Lower Right. Next, we pick another unburned pop-
ulated cell and repeat the algorithm until all populated cells are assigned to

a cluster. The population Si(t) of cluster i at time t is then Si(t) = ∑Ni
j=1 n(i)

j (t).
(B) Cluster identified with the CCA in the London area (red) overlaying a
corresponding satellite image (extracted from maps.google.com). The green-
ery corresponds to vegetation, and thus approximately indicates unoccupied
areas. For example, Richmond Park can be found as a vegetation area in the
southwest. The areas in the east along the Thames River correspond mainly to
industrial districts, and in the west to the London Heathrow Airport, also not
populated. The yellow line in the center represents the administrative bound-
ary of the City of London, demonstrating the difference with the urban cluster
found with the CCA. The pink clusters surrounding the major red cluster are
smaller conglomerates not connected to London. The figure shows that an
analysis based on the City of London captures only a partial area of the real
urban agglomeration. (C) Result of the CCA applied to all of Great Britain
showing the large variability in the population distribution. The color bar (in
logarithmic scale) indicates the population of each urban cluster.

start by selecting an arbitrary populated cell (final results are
independent of the choice of the initial cell). Iteratively, we then
grow a cluster by adding nearest neighbors of the boundary cells
with a population strictly >0, until all neighbors of the boundary
are unpopulated. We repeat this process until all populated cells
have been assigned to a cluster. This technique was introduced to
model forest fire dynamics (11) and is termed the “burning algo-
rithm,” because one can think of each populated cell as a burning
tree.

The population Si(t) of cluster i at time t is the sum of the
populations n(i)

j (t) of each cell j within it, Si(t) = ∑Ni
j=1 n(i)

j (t),

where Ni is the number of cells in the cluster. Results of the CCA
are shown in Fig. 1B, representing the urban cluster surround-
ing the City of London (red cluster overlaying a satellite image,
see http://lev.ccny.cuny.edu/∼hmakse/cities/london.gif for an ani-
mated image of Fig. 1B). Fig. 1C depicts all the clusters of Great
Britain, indicating the large variability in their population and
size.

The CCA allows the analysis of the population clusters at
different length scales by coarse-graining the grid and applying
the CCA to the coarse-grained dataset (see Information on the
Datasets for details on coarse-graining the data). At larger scales,
disconnected areas around the edge of a cluster could be added
into the cluster. This is justified when, for example, a town is
divided by a wide highway or a river.

Tables S1 and S2 in supporting information (SI) Appendix show
a detailed comparison between the urban clusters obtained with
the CCA applied to the United States in 1990, and the results
obtained from the analysis of MSAs from the US Census Bureau
used in previous studies of population growth (5–7). We observe
that the MSAs considered in ref. 5 are similar to the clusters
obtained with the CCA with a cell size of 4 km by 4 km or 8
km by 8 km. In particular, the population sizes of the clusters
have the same order of magnitude as the MSAs. However, for
large cities the MSAs from the data of ref. 6 seem to be mostly
comparable to our results for cell sizes of 2 km by 2 km or 4 km
by 4 km.

Use of the CCA permits a systematic study of cluster dynam-
ics. For instance, clusters may expand or contract, merge or split
between two considered times, as illustrated in Fig. 2. We quan-
tify these processes by measuring the probability distribution of
the temporal changes in the clusters for the data of Great Britain.
We find that when the cell size is 2.2 km by 2.2 km, 84% of the
clusters evolve from 1981 to 1991 following the first 3 cases pre-
sented in Fig. 2 (no change, expansion, or reduction), 6% of the
clusters merge from 2 clusters into one in 1991, and 3% of the
clusters split into 2 clusters.

Next, we apply the CCA to study the dynamics of popula-
tion growth by investigating Gibrat’s law, which postulates that
the mean and standard deviation of growth rates are constant
(1, 2, 5, 7, 12). The conventional method (1, 2, 7) is to assume that

Fig. 2. Illustration of possible changes in cluster shapes. In each case we
show how the growth rate is computed. In the first case, there is no areal mod-
ification in the cluster between t0 and t1. In the second, the cluster expands.
In the third, the cluster reduces its area. In the fourth, one cluster divides into
two and therefore we consider the population at t1 to be S1 = S′

1 + S′′
1. In the

fifth case, two clusters merge to form one at t1. In this case, we consider the
population at t0 to be S0 = S′

0 + S′′
0.
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the populations of a given city or cluster i, at times t0 and t1 > t0,
are related by

S1 = R(S0)S0, [1]

where S0 ≡ Si(t0) = ∑Ni
j n(i)

j (t0) and S1 ≡ Si(t1) = ∑Ni
j n(i)

j (t1)
are the initial and final populations of cluster i, respectively,
and R(S0) is the positive growth factor, which varies from clus-
ter to cluster. Following the literature in population dynamics
(1, 2, 5, 7), we define the population growth rate of a cluster as
r(S0) ≡ ln R(S0) = ln(S1/S0), and study the dependence of the
mean value of the growth rate, 〈r(S0)〉, and the standard deviation,
σ (S0) = √〈r(S0)2〉 − 〈r(S0)〉2, on the initial population, S0. The
averages 〈r(S0)〉 and σ (S0) are calculated by applying nonpara-
metric techniques (13, 14) (see Calculation of 〈r(S0)〉 and σ (S0)
and Methodology for details). To obtain the population growth
rate of clusters we take into account that not all clusters occupy
the same area between t0 and t1 according to the cases discussed
in Fig. 2. The figure shows how to calculate the growth rate r(S0)
in each case.

We analyze the population growth in the United States from
t0 = 1990 to t1 = 2000 (9). We apply the CCA to identify the
clusters in the data of 1990 and calculate their growth rates by
comparing them with the population of the same clusters in 2000
when the data are gridded with a cell size of 2 km by 2 km. We
calculate the annual growth rates by dividing r by the time interval
t1 − t0.

Fig. 3A shows a nonparametric regression with bootstrapped
95% confidence bands (13, 14) of the growth rate of the USA,
〈r(S0)〉 (see Calculation of 〈r(S0)〉 and σ (S0) and Methodology for
details). We find that the growth rate diminishes from 〈r(S0)〉 ≈
0.012 ± 0.004 (error includes the confidence bands) for popula-
tions <104 inhabitants to 〈r(S0)〉 ≈ 0.002 ± 0.002 for the largest
populations at approximately S0 ≈ 107. We may argue that the
mean growth rate deviates from Gibrat’s law beyond the confi-
dence bands. Although it is difficult to fit the data to a single
function for the entire range, the data show a decrease with S0
approximately after a power law in the tail for populations >104.
An attempt to fit the data with a power law yields the following
scaling in the tail:

〈r(S0)〉 ∼ S−α
0 , [2]

where α is the mean growth exponent, which takes a value αUSA =
0.28 ± 0.08 from Ordinary Least Squares (OLS) analysis (15) (see
Calculation of 〈r(S0)〉 and σ (S0) and Methodology for details on
OLS and on the estimation of the exponent error).

Fig. 3B shows the dependence of the standard deviation σ (S0)
on the initial population S0. On average, fluctuations in the growth
rate of large cities are smaller than for small cities in contrast to
Gibrat’s law. This result can be approximated over many orders
of magnitude by the power law,

σ (S0) ∼ S−β

0 , [3]

where β is the standard deviation exponent. We carry out an OLS
regression analysis and find that βUSA = 0.20±0.06. The presence
of a power law implies that fluctuations in the growth process are
statistically self-similar at different scales, for populations ranging
from ∼1,000 to ∼10 million according to Fig. 3B.

Fig. 4 shows the analysis of the growth rate of the popula-
tion clusters of Great Britain from gridded databases (8) with
a cell size of 2.2 km by 2.2 km at t0 = 1981 and t1 = 1991.
The average growth rate depicted in Fig. 4A comprises large
fluctuations as a function of S0, especially for smaller popula-
tions. However, a slight decrease with population seems evident
from rates around 〈r〉 ≈ 0.008 ± 0.001 with S0 ≈ 104 drop-
ping to zero or even negative values for the largest populations,

S0 ≈ 106. We find that 3,556 clusters with population at approx-
imately S0 = 103 exhibit negative growth rates as well. Thus, the
mean rates are plotted on a semilogarithmic scale in Fig. 4A. When
considering intermediate populations ranging from S0 = 3, 000
to S0 = 3 × 105, the data seem to be following approximately a
power law with αGB = 0.17 ± 0.05 from OLS regression analysis,
as shown in Fig. 4A Inset. Fig. 4B shows the standard deviation
for GB, σ (S0), exhibiting deviations from Gibrat’s law having a
tendency to decrease with population according to Eq. 3 and a
standard deviation exponent, βGB = 0.27 ± 0.04, obtained with
OLS technique.

The CCA allows for a study of the growth rates as a function
of the scale of observation, by changing the size of the grid. We
find (SI Appendix, Section II) that the data for GB are approxi-
mately invariant under coarse-graining the grid at different levels
for both the mean and standard deviation. When the data of the
United States are aggregated spatially from cell size 2 km to 8 km,
the scaling of the mean rates crosses over to a flat behavior closer
to Gibrat’s law. At the scale of 8 km the mean is approximately
constant (with fluctuations). However, we find that, at this scale,
all cities in the northeastern the United States spanning from
Boston to Washington, DC, form a single cluster. Despite these
differences, the scaling of the standard deviation for the United
States holds approximately invariant even up to the large scale of
observation of 8 km.

Fig. 3. Results for the United States by using a cell size of 2 km by 2 km.
(A) Mean annual growth rate for population clusters in the Unites States ver-
sus the initial population of the clusters. The straight dashed line shows a
power-law fit with αUSA = 0.28 ± 0.08 as determined by using OLS regres-
sion. (B) Standard deviation of the growth rate for the United States. The
straight dashed line corresponds to a power-law fit using OLS regression with
βUSA = 0.20 ± 0.06.
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Fig. 4. Results for Great Britain by using a cell size of 2.2 km by 2.2 km. (A) Mean annual growth rate of population clusters in Great Britain versus the initial
cluster population. Inset Double-logarithmic plot of the growth rate in the intermediate range of populations, 3, 000 < S0 < 3 × 105. A power-law fit using
OLS leads to an exponent αGB = 0.17 ± 0.05 for this range. (B) Double-logarithmic plot of the standard deviation of the annual growth rates of population
clusters in Great Britain versus the initial cluster population. The straight line corresponds to a power-law fit using OLS with an exponent βGB = 0.27 ± 0.04,
according to Eq. 3. (C) Scaling of the standard deviation in cluster population obtained from the randomized surrogate dataset of Great Britain by randomly
swapping the cells. The data show an exponent βrand = 1/2 in the tail. The deviations for small S0 are discussed in the SI Appendix, Section IV, where we test
these results by generating random populations. (D) Long-range spatial correlations in the population growth of cells for Great Britain according to Eq. 6. The
straight line corresponds to an exponent γ = 0.93 ± 0.08.

Next, we analyze the population growth in Africa during the
period from 1960 to 1990 (10). In this case, the population data
are based on a larger cell size, so we evaluate the data cell by cell
(without the application of the CCA). Despite the differences in
the economic and urban development of Africa, Great Britain,
and the USA, we find that the mean and standard deviation of
the growth rate in Africa display similar scaling as found for the
United States and Great Britain. In Fig. 5A we show the results
for the growth rate in Africa when the grid is coarse-grained with
a cell size of 77 km by 77 km. We find a decrease of the growth rate
from 〈r(S0)〉 ≈ 0.1 to 〈r(S0)〉 ≈ 0.01 between populations S0 ≈ 103

and S0 ≈ 106, respectively. All populations have positive growth
rates. A log-log plot of the mean rates shown in Fig. 5A reveals a
power-law scaling 〈r(S0)〉 ∼ S−αAf

0 , with αAf = 0.21 ± 0.05 from
OLS regression analysis. The standard deviation (Fig. 5B) satisfies
Eq. 3 with a standard deviation exponent βAf = 0.19 ± 0.04.

The CCA allows for a study of the origin of the observed behav-
ior of the growth rates by examining the dynamics and spatial
correlations of the population of cells. To this end, we first generate
a surrogate dataset that consists of shuffling two randomly cho-
sen populated cells, n(i)

j (t0) and n(i)
k (t0), at time t0. This swapping

process preserves the probability distribution of n(i)
j , but destroys

any spatial correlations among the population cells. Fig. 4C shows
the results of the randomization of the Great Britain dataset,

indicating power-law scaling in the tail of σ (S0) with standard
deviation exponent βrand = 1/2. This result can be interpreted
in terms of the uncorrelated nature of the randomized dataset
(SI Appendix, Section III). We consider that the population of each
cell j increases by a random amount δj with mean value δ̄ and vari-
ance 〈(δ − δ̄)2〉 = �2, and that r � 1, then n(i)

j (t1) = n(i)
j (t0) + δj.

Therefore, the population of a cluster at time t1 can be written as

S1 = S0 +
Ni∑
j=1

δj. [4]

It can be shown that (SI Appendix, Section III):

〈
S2

1

〉 = 〈
S2

0

〉 + Ni∑
j

Ni∑
k

〈(δj − δ̄)(δk − δ̄)〉. [5]

Randomly shuffling population cells destroys the correlations,
leading to 〈(δj − δ̄)(δk − δ̄)〉 = �2δjk (where δjk is the Kronecker
delta function) which implies βrand = 1/2 (16) (see SI Appendix,
Section III).

The fact that β lies below the random exponent (βrand = 1/2)
for all the analyzed data suggests that the dynamics of the pop-
ulation cells display spatial correlations, which are eliminated in
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Fig. 5. Results for Africa by using a cell size of 77 km by 77 km. (A) Mean
growth rate of clusters in Africa versus the initial size of population S0. The
straight dashed line shows a power-law fit with exponent αAf = 0.21 ± 0.05,
obtained by using OLS regression. (B) Standard deviation of the growth
rate in Africa. The straight line corresponds to power-law fit by using OLS
providing the exponent βAf = 0.19 ± 0.04.

the random surrogate data. The cells are not occupied randomly
but spatial correlations arise, because when the population in one
cell increases, the probability of growth in an adjacent cell also
increases. That is, development attracts further development, an
idea that has been used to model the spatial distribution of urban
patterns (17). Indeed these ideas are related to the study of the
origin of power laws in complex systems (18, 19).

When we analyze the populated cells, we indeed find that spa-
tial correlations in the incremental population of the cells, δj,
are asymptotically of a scale-invariant form characterized by a
correlation exponent γ ,

〈(δj − δ̄)(δk − δ̄)〉 ∼ δ2

|	xj − 	xk|γ , [6]

where 	xj is the location of cell j. For Great Britain we find
γ = 0.93 ± 0.08 (see Fig. 4D). In SI Appendix, Section III, we
show that power-law correlations in the fluctuations at the cell
level, Eq. 6, lead to a standard deviation exponent β = γ /4. For
γ = 2, the dimension of the substrate, we recover βrand = 1/2
(larger values of γ result in the same β because when γ > 2 cor-
relations become irrelevant). If γ = 0, the standard deviation of
the population growth rates has no dependence on the population
size (β = 0), as stated by Gibrat’s law, stating that the standard
deviation does not depend in the cluster size. In the case of Great
Britain, γ = 0.93 ± 0.08 gives β = 0.23 ± 0.02 approximately
consistent with the measured value βGB = 0.27 ± 0.04, within the

error bars. This observation suggests that the underlying demo-
graphic process leading to the scaling in the standard deviation
can be modeled as arising from the long-range correlated growth
of population cells.

Discussion
Our results suggest the existence of scale-invariant growth mech-
anisms acting at different geographical scales. Furthermore, Eq. 3
is similar to what is found for the growth of firms and other
macroeconomic indicators (16, 20). Thus, our results support the
existence of an underlying link between the fluctuation dynamics
of population growth and various economic indicators, implying
considerable unevenness in economic development in different
population sizes. City growth is driven by many processes of which
population growth and migration is only one. Our study captures
only the growth of population, but not economic growth per se.
Many cities grow economically while losing population and, thus,
the processes we imply are those that influence a changing popu-
lation. Our assumption is that population change is an indicator
of city growth or decline and, therefore, we have based our stud-
ies on population-clustering techniques. Alternatively, the MSAs
provides a set of rules that try to capture the idea of city as a
functional economic region.

The results we obtain show scale-invariant properties that we
have modeled by using long-range spatial correlations between the
population of cells. That is, strong development in an area attracts
more development in its neighborhood and much beyond. A key
finding is that small places exhibit larger fluctuations than large
places. The implications for locating activity in different places are
that there is a greater probability of larger growth in small places,
but also a greater probability of larger decline. Opportunity must
be weighed against the risk of failure.

One may take these ideas to a higher level of abstraction to study
cell-to-cell flows (migration, commuting, etc.) gridded at different
levels. As a consequence one may define population clusters, or
MSAs, in terms of functional linkages between neighboring cells.
In addition one may relax some conditions imposed in the CCA.
Here, we consider a cell to be part of a cluster only if its population
is strictly >0. In SI Appendix, Section V, we relax this condition and
study the robustness of the CCA when cells of a higher popula-
tion than 0 (for instance, 5 and 20) are allowed into clusters and
find that, even though small clusters present a slight deviation,
the overall behavior of the growth rate and standard deviation is
conserved.

Materials and Methods
Information on the Datasets. The datasets analyzed in this article were
obtained from the web sites http://census.ac.uk; http://www.esri.com/; and
http://na.unep.net/datasets/datalist.php, for Great Britain, the United States,
and Africa, respectively, and can be downloaded from http://lev.ccny.cuny.
edu/∼hmakse/cities/city_data.zip.

The datasets consist of a list of populations at specific coordinates at 2 time
steps, t0 and t1. A graphical representation of the data can be seen in Fig. 1C
for Great Britain where each point represents a data point directly extracted
from the dataset.

To perform the CCA at different scales we coarse-grain the datasets. For
this purpose, we overlay a grid on the corresponding map (United States,
Great Britain, or Africa) with the desired cell size (e.g., 2 km by 2 km or 4 km
by 4 km for the United States). Then, the population of each cell is calculated
as the sum of the populations of points (obtained from the original dataset)
that fall into this cell.

Table 1 shows information on the datasets and results on United States,
Great Britain, and Africa for the cell size used in the main text as well as some
of the exponents obtained in our analysis.

Calculation of 〈r(S0)〉 and σ(S0) and Methodology. The average growth rate,
〈r(S0)〉 = ln(S1/S0), and the standard deviation, σ (S0) = √〈r(S0)2〉 − 〈r(S0)〉2,
are defined as follows. If we call P(r|S0) the conditional probability distribu-
tion of finding a cluster with growth rate r(S0) with the condition of initial
population S0, then we can obtain r(S0) and σ (S0) through,

〈r(S0)〉 =
∫

rP(r|S0)dr, [7]

18706 www.pnas.org / cgi / doi / 10.1073 / pnas.0807435105 Rozenfeld et al.
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Table 1. Characteristics of datasets and summary of results

No. Average No. of
Data of cells t0 t1 growth rate, % Cell size clusters α β

USA 1.86 mill 1990 2000 0.9 2 km by 2 km 30,210 0.28 ± 0.08 0.20 ± 0.06
GB 0.10 mill 1981 1991 0.3 2.2 km by 2.2 km 10,178 0.17 ± 0.05 0.27 ± 0.04
Africa 2,216 1960 1990 4 77 km by 77 km 3,988 0.21 ± 0.05 0.19 ± 0.04

and

〈r(S0)2〉 =
∫

r2P(r|S0)dr. [8]

Once r(S0) and σ (S0) are calculated for each cluster, we perform a nonpara-
metric regression analysis (13, 14), a technique broadly used in the literature
of population dynamics. The idea is to provide an estimate for the relationship
between the growth rate and S0 and between the standard deviation and S0.
Following the methods explained in ref. 14, we apply the Nadaraya–Watson
method to calculate an estimate for the growth rate, r̂(S0), with,

〈r̂(S0)〉 =
∑allclusters

i=0 Kh(S0 − Si(t0))ri(S0)∑allclusters
i=0 Kh(S0 − Si(t0))

, [9]

and an estimate for the standard deviation σ̂ (S0) with,

σ̂ (S0) =
√√√√ ∑allclusters

i=0 Kh(S0 − Si(t0))(ri(S0) − 〈r̂(S0)〉)2∑allclusters
i=0 Kh(S0 − Si(t0))

, [10]

where Si(t0) is the population of cluster i at time t0 (as defined in the main
text), ri(S0) is the growth rate of cluster i, and Kh(S0 − Si(t0)) is a Gaussian
kernel of the form,

Kh(S0 − Si(t0)) = e
(lnS0−lnSi (t0))2

2h2 , h = 0.5 [11]

Finally, we compute the 95% confidence bands (calculated from 500 ran-
dom samples with replacement) to estimate the amount of statistical error
in our results (13). The bootstrapping technique was applied by sampling
as many data points as the number of clusters and performing the non-
parametric regression on the sampled data. By performing 500 realizations
of the bootstrapping algorithm and extracting the so-called α/2 (α is not
related to the growth rate exponent) quantile we obtain the 95% confidence
bands.

To obtain the exponents α and β of the power-law scalings for 〈r(S0)〉 and
σ (S0), respectively, we perform an OLS regression analysis (15). More specif-
ically, to obtain the exponent β from Eq. 3, we first linearize the data by

considering the logarithm of the independent and dependent variables so
that Eq. 3 becomes lnσ (S0) ∼ βlnS0. Then, we apply a linear OLS regression
that leads to the exponent

β = Nc
∑Nc

i=1[ln Si(t0) ln σ (Si(t0))] − ∑Nc
i=1 ln Si(t0)

∑Nc
i=1 ln σ (Si(t0))

Nc
∑Nc

i=1(ln Si(t0))2 −
(∑Nc

i=1 ln Si(t0)
)2 , [12]

where Nc is the number of clusters found by using the CCA. Analogously, we
obtain the exponent α by linearizing 〈|r(S0)|〉 and calculating

α = Nc
∑Nc

i=1(ln Si(t0) ln 〈|r(Si(t0))|〉 − ∑Nc
i=1 ln Si(t0)

∑Nc
i=1 ln〈|r(Si(t0))|〉

Nc
∑Nc

i=1(ln Si(t0))2 − (
∑Nc

i=1 ln Si(t0))2
. [13]

Next, we compute the 95% confidence interval for the exponents α and
β. For this we follow the book of Montgomery and Peck (15). The 95%
confidence interval for β is given by,

t0.025,Nc−2 ∗ se, [14]

where tα′/2,Nc−2 is the t distribution with parameters α′/2 and Nc − 2 and se
is the standard error of the exponent defined as

se =
√

SSE

(Nc − 2)Sxx
, [15]

where SSE is the residual and Sxx is the variance of S0.
Finally, we express the value of the exponent in terms of the 95%

confidence intervals as,

β ± t0.025,Nc−2 ∗ se. [16]
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