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Abstract. This paper is addressed to the problem of developing realistic-looking patterns of 
land use and activity from predictions generated by conventional urban models. The method 
developed is based on a geometric model of irregularity involving hierarchical cascading and 
recursion, whose rationale lies in the emergent field of fractal geometry. First the idea of 
fractals—shapes with fractional dimension—is introduced and then it is shown how two-
dimensional patterns whose dimensions are consistent with a large city such as London can 
be simulated at different levels of detail or recursion. It is then argued that the hierarchical 
structure of cities should be exploited as a basis for such simulation, and it is argued that 
discrete choice models of individual spatial behaviour have excellent properties which enable 
their embedding into such simulations. 

The standard multinomial logit model is presented and then applied to house-type data in 
Greater London. A variety of models are estimated, house-type choice being related to age 
and distance from the centre of the city, and the spatial biases in these predictions are then 
mapped using prediction success statistics. These models are then used at the base level of a 
fractal simulation of house type and location in London. Random and deterministic model 
simulations are developed, and an unusual and possibly innovative feature of these simulations 
involves the way the inputs and outputs, data and predictions, are simultaneously displayed 
on the graphics device used. Conclusions for further research, particularly in spatial 
hierarchical modelling, are then sketched. 

Introduction 
T h e authors of most urban models proposed so far have concentrated upon 
simulating economically orientated activities expressed in terms of employment, 
populat ion, and t ransportat ion at the macrospatial level in large zones, or at the 
microlevel at the level of the individual or the firm. These traditions broadly 
follow research into models of the Lowry type in which spatial interaction is 
emphasised, or research into discrete choice theory where the emphasis has been 
on econometr ic estimation of individual choice behaviour. Al though the two 
traditions are complementary and are increasingly being merged (Anas, 1982), 
urban models have rarely been proposed which take the level of simulation to the 
physical configuration of land use itself. O n e argument suggests that it is the 
activity level which is the appropr ia te level at which to simulate, for it is here that 
economic theory can be brought to bear on model design, and thus there is an 
implicit view that the translation of spatial activity into physical land use is a fairly 
trivial task or, at least, does not matter. It is more likely that the dear th of work 
in modelling land use per se is largely the result of unconscious neglect on the par t 
of urban modellers who have found it easier to begin with activity simulation and 
whose disciplinary biases have constrained their interest in the physical form of cities. 

However a major problem has begun to emerge in conventional modelling which 
relates to the spatial interpretat ion of model predict ions. When model outputs in 
terms of activities are mapped spatially over aggregate zones or as individual point 
pat terns, these outputs often look ' incorrect ' in some indefinable physical sense. 
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One can achieve exceptionally good model fits using conventional indicators, and 
such models can display robust and causally acceptable structure, but, when 
predictions are mapped, the whole does not seem to add up to the sum of the 
parts; systematic biases appear and the patterns often look physically unbalanced. 
In macromodelling, such biases can often be corrected or at least there are 
strategies which enable under- and overprediction to be handled consistently, but 
with discrete choice models the problem is that such outputs are rarely ever 
mapped spatially. Spatial bias is never assessed unless large-scale simulation is 
attempted, and thus in discrete choice modelling there are few checks on whether 
or not such models generate spatially acceptable predictions. 

This is a general and difficult question which can be treated in a variety of 
ways, but a school of thought is fast emerging in the physical and biological 
sciences which suggests that the ultimate test of a model is that 'it must look 
right'. In one sense, this school represents a 'back-to-basics' movement which is 
based on dissatisfaction with conventional modelling strategies, but it also reflects 
the fact that computers are now so powerful that it is possible to present such 
general pictures of model performance quickly and efficiently. This approach to 
modelling is seen most clearly in the study of irregular spatial patterns whose 
irregularity has systematic properties which somehow must be captured. A new 
branch of physical form has emerged to deal with these questions which has deep 
and far-reaching implications for spatial modelling; in essence, shapes which are 
irregular but self-similar, such as coastlines, mountains, trees, crumpled newspaper, 
and a variety of physical phenomena, as well as artificial phenomena such as the 
rank-size distribution of cities, are treated. Such shapes are also considered to 
have fractional dimension (nonintegral dimension), this branch of geometry and the 
objects involved being called fractals by Mandelbrot (1982b). 

It is in this area that a very strong case for judging the success of models by 
their appearance is being made. In our own area, it is easy to see that the physical 
properties of land use in terms of plot size, shape, and density seem to display the 
irregularity which is considered to be fractal. We know that cities are self-similar 
in a variety of ways, central place theory being the clearest demonstration of this 
principle (Arlinghaus, 1985). Thus the idea that city structures could be fractal is 
appealing, but of more import is the possibility that fractal geometry may well 
contain the basis for linking activity models to their physical context. This is the 
issue we will broach here. In essence, we will begin with traditional models of 
urban structure which reflect the spatial organisation of activities, and we will 
formulate these using discrete choice theory. We will then embed these into a 
fractal simulation of physical urban structure, thus enabling us to examine the 
spatial patterns and physical forms which emerge from model predictions of 
individual choice. At one level, this project is an exercise in generalising discrete 
choice models through large-scale simulation, but at another level, it is a project 
designed to increase the realism of spatial models. 

There are many ideas introduced in this paper and it is important to be clear at 
the outset as to how these interact. Although the prime concern here is with the 
process of physical land-use simulation using fractal concepts, the issue of 
embedding traditional models in the framework of large-scale simulation is also 
important. In this we follow Anas (1982) in his concern for using discrete choice 
theory in a more general context. Several problems in discrete choice theory are 
also raised here, in particular spatial choice and aggregation, and these models are 
obvious candidates for further analysis in these terms. However we will not take 
these ideas forward here, but we will note their key implications. 
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Second, we will introduce the idea that the model-building process is based on 
the loose cycle of inductive explanation, and deductive prediction. For example, 
discrete choice models are strongly inductive in their specification and estimation, 
whereas spatial interaction models of the entropy type are specified a priori, and 
are hence deductive. Proponents of either style of modelling rarely pursue the 
inductive - deductive cycle in any complete sense, but the argument here suggests 
that fractal simulation can provide a framework for such a process. Large-scale 
simulation itself establishes such a framework but there are few attempts which 
model the entire cycle. The work of Chapin and Weiss (1968) is an exception in 
that they attempted to explain urban growth using a linear statistical model and 
then reproduced that growth in a large-scale random simulation framework. This 
paper is very much in that spirit, but in our attempt to represent the entire model-
building cycle, a number of corners will be cut and thus only picked up as items 
for further research. 

A third issue involves the question raised originally of physical appearance. The 
patterns which we generate must 'look right' and this will be our guiding principle 
of fractal simulation. As we have a strong feel for what urban structure looks like 
from land-use maps, we will assess the appropriateness of the model estimation 
and simulation through appearance of the generated maps, as well as through more 
traditional statistics. Mandelbrot (1982a, page 581) says it all: "the basic proof of 
a stochastic model of nature is in the seeing; numerical comparisons must come 
second". This statement we will argue is as true of artificially generated phenomena 
as of nature, and in our quest to demonstrate this through computer modelling and 
simulation, computer graphics will be all-important. 

A fourth issue relates to computer graphics in particular and computer modelling 
more generally. This work has only been made possible through advances in computer, 
systems and software. The project involved a remarkable mixture of computers, 
modelling systems, and styles. The discrete choice models, for example, are 
estimated using a standard logit package mounted on a mainframe computer, with 
intermediate processing on a minicomputer which acts as the front end to yet 
another mainframe on which the spatial mapping packages and data are mounted. 
The graphics simulation, however, is conducted using a graphics-based micro whose 
memory is mainly given over to the screen display. In fact, these styles are seen 
quite clearly in the figures reproduced in this paper in which the spatial predictions 
produced for the discrete choice models are presented using standard plotter 
outputs, in contrast to the simulations which are illustrated in photographs of the 
raster graphics screen. 

We will now spell out the organisation of the paper. In the next section we will 
introduce key ideas concerning fractals—questions of geometry, self-similarity, and 
irregularity, as well as the development of computer graphics to display fractal 
shapes. It is important to present readers with a 'feel' for fractal simulation early 
on and thus, as soon as we get the idea of fractals across, we will demonstrate 
how computer graphics can be used to simulate fractal patterns. We will use a 
hypothetical city structure whose dimensions are those of Greater London (which 
will be our eventual application here too) and we will then show how we can 
simulate three spatial activities using ideas of recursion and hierarchy. The urban 
structure we capture is based on simple distance relations from the central business 
direct (CBD), and the simulation is structured randomly in the same manner as 
that used originally by Chapin and Weiss (1968). 

At this point we will take one step back and briefly introduce the model-
building process in terms of explanation and simulation, induction and deduction, 
emphasising the need to contain both within any complete process. We will then 
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explain how this process can be completed for the fractal simulation of urban 
structure in London. The inductive approach we will adopt is based on discrete 
choice theory, the estimation of a standard multinomial logit model (Hensher and 
Johnson, 1981) of housing choice, and measurement of its performance using 
McFadden's (1979) predicted success statistics. We will show how the model is 
fitted to data relating to choice of house type and location in London, as a function 
of key variables of urban structure relating to age and distance. Several models 
are fitted, some are reestimated,.and computer maps are used to aid the interpretation 
process. 

We are then in a position to begin fractal simulation of urban structure at whose 
base lie the fitted discrete choice models. The simulations are essentially visual, 
the data themselves being displayed on the screen and being replaced by predicted 
house types as the simulation proceeds. Two types of simulation are at tempted-
random and deterministic—and it is shown how it is necessary to develop 
deterministic procedures to enable the discrete choice models to generate realistic 
patterns. There are many conclusions to this paper and work both on fractal 
images (Pentland, 1984) and on spatial discrete choice models (Lerman, 1985) 
represent major directions for further research. 

The modelling of spatial pattern 
Fractal geometry: self-similarity and irregularity 
The classic way to introduce fractal geometry is to discuss the shape of a 
coastline. Viewed at a fixed scale, any coastline appears to have a degree of 
irregularity which can be measured using that scale. As one goes down-scale or 
nearer to the coastline if one is actually approaching it, the area in view gets 
smaller, but the scale also gets smaller and it seems the degree of irregularity is 
much the same as that viewed from the higher level. As one continues down-scale 
examining smaller and smaller nooks and crannies in the coastline, the level of 
irregularity always seems to be the same in terms of the scale chosen. Such shapes 
are said to have the property of self-similarity in that what appears at one level 
appears at the next level, and so on down the hierarchy. 

There are several consequences of this fact. If the length of the coastline is 
measured between two fixed points at different scales, its length will increase as 
finer and finer scales are used. Unlike a straight line, a crinkly line seems to have 
infinite length because the crinkles exist at every level or scale of resolution. This 
conundrum has been noted for generations, but the first to give it formal expression 
was Mandelbrot (1967) who argued that such lines have essentially an undefinable 
length in that they are scale-bound or scale-dependent. But of more profound 
import was Mandelbrot's demonstration that such shapes have fractional, not 
integral dimension. A straight line has dimension 1, a plane 2, but coastlines have 
a fractional or fractal dimension between 1 and 2, mountains between 2 and 3, and 
so on. 

Generalisation of the concepts of fractal dimension, and fractal shape is possible, 
although fractals do have some constant limit relating to their area (Mandelbrot, 
1982b). Research into fractals has utilised computer graphics to display sections 
through fractals with greater than 3-dimensional form (Norton, 1982), and 
examples of fractals with dimensions between 0 and 1 exist based on phenomena 
which dissipate. In one sense, all phenomena are fractal because shapes with 
integer dimensions are special cases, and are abstractions in that perfectly integral 
shapes are impossible to reproduce in reality. Fractals thus appear everywhere and 
this is what makes the fractal idea so appealing, in that it is so obvious and real, 
yet so profound. 
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Natural examples of fractals abound, but there are an increasing number of 
examples of man-made fractals, or rather man-made or artificial phenomena whose 
description is aided by the fractal concept. Cities are clearly self-similar in a 
variety of ways. Central place theory which is based on the regular subdivision of 
market-area size, leads to a distribution of market areas and central places which is 
consistent with the rank-size rule (Arlinghaus, 1985). This need not concern us 
further here, except it is worth noting that Mandelbrot (1960) has already shown 
that such size distributions are fractal. More recently, concern for processing 
images by computer derived from the development of remote-sensing has led to the 
analysis of spatial patterns which exist within such images. Fractal structure is 
clearly present in images of cities at a variety of levels, and Pentland (1984) 
suggests ways in which databases relevant to fractal simulation can be generated in 
this way. On a more prosaic level, simply examine a map of land use for a large 
city and compare this with other fractal scenes such as those based on terrain. A 
good map to look at which is consistent with the work reported here is Abercrombie's 
1944 Greater London Plan Map which is reproduced on the front of The Planner 
(volume 70, number 11, 1984). Although land-use patterns have not been shown 
conclusively to be fractal as yet, enough evidence exists to encourage the use of 
fractal geometry in exploring their appearance. This, as we shall see, is essential to 
our purpose. 

Measurement and modelling 
Major efforts have already been mounted to classify fractals by their fractal 
dimension, and a variety of measurement techniques have been introduced. Several 
algorithms to determine dimension have been developed in computer cartography 
(for example, see Shelberg et al, 1982) and these have led to investigation of the 
stability of fractal dimension across different scales. This represents the first stage 
in the modelling cycle: determining whether or not the object and its shape are 
fractal, and then using this description as a basis for simplification through 
simulation. As part of this quest, fractals have been used extensively to enhance 
cartographic detail where a shape is too complex to describe in detail and where 
the shape in question can be approximated in its realism through fractal rendering 
(Dutton, 1981; Hill and Walker, 1982). The classic example is Australia whose 
basic shape can be encoded in eight pairs of x-y coordinates and made realistic 
through fractal simulation along the lines linking the eight points (Fournier et al, 
1982; Dell'Orco and Ghiron, 1983). 

However, the momentum in fractal geometry is in modelling, rather than in 
description. Models of nonrandom fractals are based on strict rules of recursion 
which contain the principle of self-similarity, and the most widely used models of 
random fractals such as coastlines depend upon Brownian motion. Mandelbrot 
(1982b) shows how such stochastic models have the properties of self-similarity 
and fractional dimension, and these have been demonstrated as relevant models for 
terrain by Mandelbrot (1975) and Goodchild (1982). The key issue underlying a 
model of a fractal involves the degree to which form can be abstracted and 
simplified. In phenomena with a high degree of detail, where detail is self-similar 
with respect to different levels of hierarchy, and where the surface form is 
nondifferentiable, it is impossible to achieve anything approximating a total 
description, which in any case is a contradiction in terms. As Mandelbrot (1982b, 
page 201) says: "The goal of achieving a full description is hopeless, and should 
not be entertained". But realism of a kind is still required, and thus models 
become a necessity. 
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Fractal-based description is thus centrally bound up with fractal simulation, once 
the principles of self-similarity and their application to generate irregularity have 
been identified. Models of fractal enhancement which introduce detail into straight-
line segments are in this spirit, as are those introduced by Goodchild (1982) in the 
simulation of terrain. In cities, land-use patterns are formed from individual sites 
and parcels whose irregularity is conditioned from a myriad of historical, social, and 
physical instances. Such patterns are impossible to describe in detail and defy 
conventional modelling at a variety of scales, and would thus appear to be fractal. 
Consequently, fractal simulation is required in models which are attempts to 
generate such patterns. This is a critical point for, in an important sense, this 
paper is about using fractals to generate perceived realism in which traditional 
urban models can be embedded. This is a more modest goal than designing a 
fractal model of urban structure, for it implies that fractals are useful not only in 
generating the underlying processes of form but in rendering the forms produced 
from traditional models, thus making them visually acceptable. 

Simulation through computer graphics 
This last point brings us to the role of computer graphics. There are many 
instances in which a fractal kind of realism is required. Typically in movies a 
specific realism is not required and this is particularly true in science fiction films 
where the realism of the scene is tempered by one's imagination. There are some 
classic applications, for example, the pictures of mountainous terrain generated by 
Carpenter at the Boeing Aircraft Corporation (see Greenberg et al, 1982) and the 
pictures of the creation of a living planet from a dead world which forms the 
Genesis sequence in the movie Star Trek //(Smith, 1982). 

A major boost to fractal research has come from computer graphics, for 
computers lend themselves to easy applications of fractal principles in areas such 
as cartography, biology, medicine, and geomorphology (Batty, 1985). Strictly, 
fractal landscapes and terrain are best generated using a model of Brownian 
motion, but this can be extremely time consuming. Shortcuts to such modelling 
exist based on exploiting the recursive structure of fractal surfaces in which a part 
'looks like' the whole: this is self-similarity. A popular method involves continual 
subdivision of space in a constrained random fashion, and this is the method used 
by Smith (1982) and Fournier et al (1982) to construct their landscapes. The 
method has come in for considerable criticism from Mandelbrot (1982a), but it 
remains the quickest and most straightforward to implement, and it is used here. 
We will describe the method in the next section, but in essence it involves generating 
high levels of spatial resolution as viewed from a given scale, by successive 
subdivision of the whole space in triangular fashion. Other tesselations of the 
plane have been proposed and used (Herbert, 1984), but triangular subdivision 
remains the most elemental spatial generator. 

We can now state the core problem to be addressed in this paper before we 
present a simple demonstration, prior to our fully fledged simulation. In essence, 
we are going to use a technique for generating realistic-looking images of the city 
by random subdivision of successive levels of the spatial hierarchy until a level of 
resolution is reached below which is is not possible to discriminate. At this lowest 
level, activity within this space is predicted using a traditional urban model. As 
such, what we are proposing is a new framework for conventional model simulation. 
In previous applications, such frameworks were either ignored or were unable to 
generate realistic-looking images with the obvious properties of self-similarity and 
irregularity. 
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A demonstration of fractal simulation 
Recursion and hierarchy 
The idea of modelling self-similarity at different scales involves finding a generating 
function which can be applied to each scale in a recursive manner. A simple 
example of recursion in a spatial system might involve a rule for generating central 
places of different orders: such a rule might involve market area, range of goods, 
population size, variety of consumer goods retailed, and so on, and would normally 
be applied first to the largest centre and then sequentially to lower order centres. 
The scheme in which such recursion takes place in spatial systems is usually 
hierarchical. We begin with the whole space or the terrain and subdivide it into a 
regular number of subspaces, quadrants say. Then each quadrant is further 
subdivided into quadrants and so on down the hierarchy until the level of 
resolution required is reached. Clearly the recursive rule involves locating lower 
order spaces through nonoverlapping subdivision. Such a scheme generates a 
hierarchy in which one space is subdivided into four, four into sixteen, sixteen into 
sixty four, and so on. 

The hierarchy is an artifact of the method. It does not necessarily have any 
substantive meaning and this is clear from its use in the generation of computer-
graphics landscapes where it is a simple device to control the level of fractal detail 
required. However, in the urban system, there is a possibility that the hierarchies 
used to generate land use could reflect notions of the city as an ordered system. 
Central place theory and neighbourhood hierarchies have already been mentioned, 
but hierarchies of traffic routes, public-sector organisations, and even firms exist if 
the original region is chosen to be sufficiently large. In one sense, treating cities as 
hierarchies is somewhat controversial, since in a number of studies, notably that by 
Alexander (1966), it is argued that hierarchy is too simplistic an ordering device 
and that activities and land uses in cities are composed into overlapping areas 
whose order is more lattice-like than hierarchical. However, this takes us to 
questions of the rationale for hierarchical organisation in cities which we must 
postpone until the next section. Here we will simply demonstrate the idea of a 
spatial hierarchy which is a consequence of the method of fractal simulation. 

The method we have developed begins by dividing the original urban space, a 
circle centred on the CBD, into ten triangular sectors or segments. Each sector is 
then subjected in turn to hierarchical subdivision, and once the required level of 
fractal detail has been reached over any sector, the simulation moves on to an 
adjacent sector and subdivision begins again. The process begins with the eastern 
sector and rotates in a counterclockwise fashion until all sectors have been 
treated. We will not comment in detail on the appropriateness or otherwise of this 
prior geometrical constraint on the simulation. Suffice it to say that the radially 
concentric and sector structure of the contemporary city is reflected in this 
organisation, and that decomposition using a square grid would be less appropriate 
to highly polarised cities such as London. However, subdivision using quadrants or 
quadtrees may be preferable for more dispersed patterns. This is a matter for 
detailed research. 

We will begin by first defining the spatial units or zones in question. The 
original circular space, referred to as Z, is subdivided into ten sectors, each sector 
referred to as Ze, where 0 is an index reflecting the angular orientation of the 
sector. Within each sector, the zones are referred to by Zk(r), where k is the zone 
and r is the hierarchical or recursive level. From each branching of the hierarchy, 
there are s zones, thus k = 1 ,..., s. Over the levels of the hierarchy given by 
recursive levels r, r = 0 ,..., h, particular zones are referred to using the sequence 
i, j , k,..., where i is a typical zone on level r — 2, j is a zone on level r — 1, /c is a 
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zone on level r, and so on. The generating rule used to subdivide zones from one 
level of hierarchy to the next is given by 

Zk(r) =Gk[Zj(r-l)], J, k = 1 , ..., s, r > l , 

where j is the zone being subdivided on level r -1, and G^ is the subdivision 
operator. A particular sequence of zones can now be generated in the following 
way. The process is begun by applying the rule in equation (1) to the original 
sector, ZQ, 

(i) 

Z,.(0) = G,(Ze) , 
_ 2JZ AJC 

6 — — , — , ... , 2JZ , 
10 10 

1 , • „ . , « . (2) 

(3) 

Recursion in equation (1) using equation (2) leads to the sequence 

Zn(r) =G„<G„,{...G,-[G,.(Z,)].. .}>. 

Because s zones are generated from each branch in the hierarchy, it is easy to 
show that at the rth level down the hierarchy there are a total of s r+1 zones. 
There is also a need for a stopping rule which ends the recursion. 

In our case, we are subdividing to form a triangular mesh. The original segment 
ZQ is divided into four triangles in the manner shown in figure 1, and thus s = 4. 
From this diagram, it is clear that at recursive level r = 0, there are four sectors 
in the original segment; at level r = 1, sixteen; at r = 2, sixty four, and so on. 

Sectoral division of the city 

Hierarchical structure 

Recursive level 0 

Recursive level 1 

Recursive level 2 

Recursive level 3 

Figure 1. T h e recursive structure of fractal simulation. 
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The stopping rule is based on the level of resolution below which further spatial 
detail is not required. In this case, it is the level of pixel resolution of the display 
screen (which is 650 x 256 pixels). A quick calculation shows that with ten sectors 
when r = 6 we are below the level of resolution of the screen, and thus in the 
rest of the paper we will find that fractal detail can be most clearly articulated at 
levels r = 4, and r = 5, not greater. 

We have chosen Gk to reflect the subdivision of a triangle space into four 
triangles in the manner shown in figure 1. This involves mid-point displacement of 
each side in a constrained random fashion, the degree of constraint reflecting the 
degree of irregularity, hence fractal dimension of the resulting surface. This is the 
technique used by Fournier et al (1982) which they argue is an appropriate 
approximation to Brownian motion in the plane. The algorithm used to effect the 
displacement uses simple trigonometric functions to compute the associated 
coordinate pairs which define the triangular mesh. The degree of randomness 
introduced is difficult to quantify in any simple way, but it is reflected in the 
displacements shown in figure 1. 

One last point relates to the way the subdivision is effected. Strictly, as the 
mesh is generated and plotted, points adjacent to new subdivisions which are 
required in forming a contiguous web must be stored and recalled when required. 
However, this has not been possible with the graphics microcomputer used here 
and thus overlaps and crevices appear in the net where triangles are not 'glued' 
together correctly. In fact, a certain degree of control over this problem is possible 
and in the event it has not turned out to be too serious. Occasionally, fissure lines 
appear in the pictures generated which imply inaccurate 'glueing', but these are 
minimal. This is another problem which will be handled in future research when 
better graphics machines are available to the project. 

Simplified urban structure 
We have already introduced the idea that traditional models of urban activity are 
to be used to predict the activity type at the level of fractal detail realised. At 
present, these models are only used at the lowest level, not at intermediate levels 
which would imply that the hierarchy used in simulation has substantive meaning. 
Thus in the simulation, once a lowest branch in the hierarchy is reached, these 
models are invoked to enable activity types to be determined. Here we have 
assumed three key urban activities: commerical - industrial land use (/ = 1), 
residential - housing (/ = 2 ) , and open space - recreational (/ =3 ) . The models for 
these activities are based on simple relations of distance from the CBD which 
establish profiles giving rise to concentric ring structures—the so-called Von Thunen 
rings—which characterise urban land use in strongly monocentric cities. In general, 
these profiles are structured so that commercial - industrial land use dominates the 
core of the city, residential - housing the periphery. 

The general form of the model predicts a probability, V\d), which is a function 
of distance, d, from the CBD, and specific to each activity, /. This is given as 

Pl(d) = al+P\d-V) , 1 = 1,2,3, (4) 

where a1, fil, and X1 are parameters whose magnitude and sign control the profile 
of the probability surface with respect to distance from the CBD. First for 
commercial - industrial activity, 1 = 1, equation (4) is written as 

P V < 400) = 1-38 - 0 . 0 0 7 4 ^ , 

where the probability declines inversely with distance, touching 0 when d ~ 185. 
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When distance is greater than 400 (screen units), the probability is set at a 
minimum value given by 

Pl(d > 400) = 0.002 , 

reflecting a minimum threshold on the existence of such activity. Comparing these 
two equations, we see there is a break in the profile from d = 185 to d = 400 
where Pl(d) = 0. To control for this, an additional equation is also applied which 
is set up as the conditional 

if P V ) < 0.04 then Pl{d < 400) = 0.04 . 

The combined effect of these equations generates the commercial - industrial profile 
shown in figure 2. 

Residential land use (/ = 2) is controlled by a similar set of equations which 
reflect both positive and inverse distance relations. Then 

P2(d < 315) = 0.20 +0.0024 ( r f -30) , 

P2(d > 315) = 0.88 -0 .0035 {d-315) . 

The effect of these equations is to produce a rising profile of probability 
from P2(0) = 0.128, to a maximum of P2(315) = 0.88, which then declines 
to P2(561) = 0. To enable a minimum threshold for residential activity to be set, 
the conditional is introduced as 

if P V ) < 0.05 then P2{d) = 0.05 . 

Last, for open space (/ =3), the relationship is one of inverse distance, 

P3{d) = 0.12 - 0 . 0 0 0 2 ^ . 

The probability declines from P3(0) = 0.12 to P3(480) = 0. To ensure the 
function does not predict negative values, the conditional 

if P3(d) < 0 thenP3(d) = 0 

is invoked. These three profiles are shown in figure 2. 
If we examine these probabilities, it is clear that these are nowhere normalised 

to sum to 1 exactly. We have done this so that X! P'(^) < 1 (/ = 1, 2, 3), the 
residual probability is regarded as the probability of vacant land occurring. The 
overall probability of a nonvacant use occurring is best seen by visually aggregating 
the profiles in figure 2, and this implies that as distance increases the probability 
of vacant land also increases. The other point is that in the vicinity of the CBD, 
in fact up to 50 units from the CBD, the probabilities sum to greater than 1, that 

o.o-

Commercial land use 1 

Residential land use 2 

Open space land use 3 

0 
i r 

Distance, d 

Figure 2. Urban land-use - activity profiles. 
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is, J] ^\d) > 1 (/ = 1, 2, 3). This does not constitute a problem because the 
activities are considered in the simulation in order of their economic importance; 
commercial - industrial are always allocated first, then residential, finally open 
space. This achieves the following effects. 

The probability structure is first set up in the order of importance of these 
activities. A range of probability is fixed for each activity as follows. R° = 1 , 
R1 = 1000 Fl(d), R2 = 1000 [ P V ) + P V ) L and R3 = 1000 [P'id) +F2{d) +P3{d)]. 
An activity type is allocated by drawing a random number between 1 and 1000 
[using RND (1000)]. If the sum of the probabilities is greater than 1, then the 
commercial - industrial activity will have priority, then residential-housing, finally 
open space. In fact, when d = 0, R1 = 1000 x 1.38, and thus the activity will 
always be commercial. Only when d > 50 will other activities be 'competing' for 
allocation. However when d > 550, R3 ~ 6, and effectively all the activity will be 
vacant land. In essence, this marks the boundary of the city. These equations thus 
control many dimensions of urban activity allocation and physical form, and the 
shape of the city can be quite radically altered by changing the parameters a1, f}1, 
and X1. The values presented were fixed by a process of trial-and-error simulation 
as well as being judged consistent with simple urban bid-rent and density theory. 

Simulation of urban land use 
The fractal simulations involve a straightforward concatenation of the recursive 
generating process [in figure 1 and equations (1) to (3)] with the general model 
structure [in figure 2 and applications of equation (4)]. To demonstrate the 
dependence of pattern and shape on the level of recursion, we have run the model 
with dimensions similar to those of Greater London (GLC, 1985) for levels of 
recursion 0 < r ^ 5. This produces six simulations which are presented in 
figure 3 (on coloured pages). These show quite different patterns. Up to 
level r = 2, the pictures reveal the coarse triangular mesh used to generate shapes 
of land-use activity. Moreover, not enough zones are generated to achieve a 
reasonable distribution of activity types. However for r > 3, the structure 
becomes much more acceptable. However, by r = 5, which touches the level of 
pixel resolution, the pattern looks more like a pointillist painting than a city. The 
most appropriate-looking images are thus generated for r = 3, and r = 4. This is 
an important point in the simulation of visual realism, and it also suggests that the 
probability structure of the underlying models is not invariant to scale, an issue 
which in some senses is obvious, but one which has rarely been explored. 

These types of simulation do, however, emphasise the inadequacies of urban 
models in terms of spatial pattern and visual realism. The images in figure 3 are 
too compact in that one might expect much greater spread of development as the 
city expands. Despite the preset wedge-sector geometry, these patterns do not 
display the classic corridor effects which characterise a radially concentric city. 
Compare these, for example, especially the images for r = 3, 4, and 5 in figure 3, 
with the pattern of growth of Greater London as far back as 1944 in At ercrombie's 
Plan for the metropolis (see The Planner, volume 70, number 11, 1984). Thus the 
immediate advantages of fractal simulation are clear. Spatial effects in models are 
immediately observable and systematic biases can be detected. Only large-scale 
simulation can achieve this. 

Last, although the dimensions of our simulations are those of London, these 
simulations are as much London as the famous Mandelbrot -Voss Planetrise 
pictures (Mandelbrot, 1982b, cover and page C9) are the earth viewed from the 
moon. This is a very important issue in fractal graphics, for in this case, it 
suggests the sorts of elements required in order to generate minimal city forms. 
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The whole feel to the images for r > 3 is that of a large city like London. 
In fact, we have cheated slightly, perhaps grossly, by adding the distinctive River 
Thames to the images after they have been generated. This is a strong perceptual 
clue to any picture, but even without it the images for r > 3 reflect a large 
concentric city like London. In our fully fledged simulations produced later for 
Greater London, we will in fact omit the River, for in these later simulations, the 
shape of the city will be encoded in the input data which reflect the built-up area, 
and the Greater London County boundary. 

Explanation and simulation 
The model-building process 
So far the hierarchical structures we have introduced do not relate to any 
observable characteristics of city systems except in the most superficial way. 
Clearly for levels 0 ^ r < 2 in figure 3, the images generated show the strong 
influence of the triangular hierarchisation and are thus not realistic. When levels 
with r ^ 3 are reached, the images no longer display the method, in that the 
concatenation of triangles at these levels produces the sorts of irregularity 
characteristic of land-use patterns. Thus, in one sense, the triangular subdivision 
process is scale-dependent. However, in fractal simulation there is still the need 
for substantive analysis as in other forms of modelling. Indeed, many examples of 
fractals can only be modelled coherently by defining their intrinsic properties of 
self-similarity: trees, for example, are self-similar through their mode of 
reproduction and growth. In geomorphology, the process of weathering and 
erosion acts in a self-similar fashion. This is clearly true for cities as well and thus 
hierarchical structure must reflect this. 

We can sketch an idealised process of fractal simulation to which we will aspire 
here and in future research. We begin by identifying hierarchy in the system of 
interest based on our perception of self-similarity in descriptions, and we are then 
able to measure whether or not the phenomenon is fractal and whether or not the 
fractal dimension is invariant to changes in scale. Each stage of measurement and 
description leads to further development of the underlying process through which 
the structure can be generated, and this in turn leads to models which are 
consistent with fractal structure. Once appropriate models, applicable to different 
levels of the spatial hierarchy, have been developed, other fractal structures 
utilising such hierarchy and incorporating the application of the underlying models 
through recursion, can be simulated. 

This approach is in fact the classic process of observing a phenomenon, 
deciding whether it meets any theoretical preconceptions we have, developing a 
'best' model structure, and then using this to enable new and different predictions 
to be made. Essentially this is the process of induction followed by deduction, or 
in a different sense, analysis followed by synthesis. We can think of induction as a 
process of building theory from the bottom up, from specifics to universals, 
whereas deduction is a top-down process in which universals are used to predict 
specifics. The best expression of this complete process is in the fields of design 
and problem-solving where problems must be understood (through induction and 
analysis) prior to their solution (through deduction and synthesis). In fact, in 
design, methods for analysis and synthesis exist which are based on searching for 
hierarchical structure: problems are decomposed in the quest to induce their 
structure and thence composed in the quest to synthesise a solution from the 
elements (Alexander, 1964; Johnson, 1984). There are parallels with the process 
used here to enable appropriate description and explanation prior to fractal 
simulation. 
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A simple example which relates to spatial theory is the rank-size distribution of 
cities. City-size distributions display regular properties which are consistent with 
subdivision of a national or regional space into market areas whose decreasing size 
reflects the frequency of spatial dependence and the rarity value of spatial goods. 
Idealised size distributions can be developed by taking a primate city and its 
national market area, generating two next-order cities, then four, then eight, and so 
on; this is the type of method used in central place theory. In terms of our 
complete cycle of model-building, we first need to identify the hierarchy of market 
areas, transport routes, population centres, etc, thus explaining spatial structure at 
different levels. This is accomplished inductively in bottom-up fashion, possibly 
using clustering-type methods. The simulation then begins from the topmost level 
in the hierarchy by subdivision and fractal rendering, generating centres and 
activities at different scales in such a way that lower levels depend on upper. 
Although there is a sense in which the simultaneity of dependence is treated by 
correct bottom-up followed by top-down analysis, in terms of fractal simulation 
which is arbitrarily structured in hierarchical terms the dependence is only one 
way. In fact, this is a problem with many hierarchical descriptions, for it is clear 
that any activity at any position in the hierarchy owes its stability to those 
activities both above and below it. This in fact is the concept of 'niche' and it is 
something which must be explored in considerable depth in further research on 
fractal simulation. 

Hierarchical models 
In spatial modelling there are some very well-developed techniques to effect this 
process of hierarchical explanation and simulation. The logical output of a process 
of continual subdivision is the elemental space which contains the individual, and 
thus individual behaviour lies at the base of the spatial hierarchy. Such models 
have been widely developed during the last decade to address problems of discrete 
choice in the economic domain using standard methods of econometric estimation 
(Lerman, 1985). These are the models which will be used here, and a particularly 
attractive feature of them is the fact that they can easily and logically incorporate 
hierarchical structure: these are the so-called sequential or nested logit models 
(Hensher and Johnson, 1981). 

Very few applications exist as yet of truly spatial discrete choice models and 
even fewer have been developed in a spatially nested form. Nevertheless, these 
models appear promising as the basis of the recursive generation of activity 
through the spatial hierarchy. The other class of models which will be considered 
at a later stage of this research, and which are related to discrete choice models, 
are spatial interaction - entropy models. It is well-known that such models have 
highly articulate properties of spatial decomposition (Roy, 1983) and this also 
makes them attractive to hierarchical simulation. There are a variety of methods 
for enabling hierarchy to be defined and built into spatial models, such as the 
standard multivariate cluster-type techniques as well as methods based on more 
subjective comparisons such as Saaty's (1980) analytic hierarchy process; these 
could also prove useful to further research. 

In the rest of the paper, we will not attempt to address the full process of 
hierarchical description through the identification and use of hierarchical models, 
but we will follow the broad sequence of inductive - deductive stages in the 
modelling process. We will begin by selecting models for individual choice of 
housing type and location in Greater London which is the urban region we intend 
to simulate. This first involves a traditional process of formulating, estimating, and 
selecting appropriate discrete choice models. Having accomplished this, we will 
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move on to the simulation in which these discrete choice models are used to predict 
housing choice at the lowest level of fractal detail generated. In this way, an image of 
the residential urban structure of Greater London is built up. Hierarchy is still a 
largely arbitrary affair in this paper, although we will address it in future research. 
But there are other problems relating to modelling and simulation which emerge 
and must be dealt with, specifically related to spatial variation. 

The logical next step in this work is to develop a 'realistic' version of our 
hypothetical simulation presented earlier. To this end, we will now sketch the 
inductive side of this effort, beginning with the theory of discrete choice and its 
application to housing in Greater London. 

Discrete choice models of urban structure 
The standard multinomial logit model 
To set the context, we must review some fairly standard results, but, in doing so, 
we will adapt discrete choice models to our application and thus only select those 
aspects which are of relevance here. We will first state the multinomial logit model 
(MNL) in which we can identify the choice by individuals /, / = 1 ,..., TV, of 
alternative k, from the set of alternatives k = 1 ,..., K, where there are TV 
individuals in the system making choices from K alternatives. This set of K is 
referred to as the choice set and in our applications involves types of housing. 
The MNL model predicts a probability, Pik, which is the probability of individual i 
choosing house type k where there are four house types to choose from, and where 
/ implicitly represents the location of the individual in the city. Thus the model is 
designed to explain choice in terms of location. 

First, we must associate a utility of choosing alternative k with the individual L 
This utility, Uik, is usually specified as a linear sum of, M, exogenous (input) 
variables which may be specific to the choice in question or nonspecific (generic). 
In our context, the parameters of these variables are made specific, being referred 
to as alternative specific constants, but the variables apply to each house type. Then 

Uik = Z Pkmxim +eim m = 1 ,..., M , 
m 

where the first term on the right hand side of the equation contains strict utility 
components made up of parameters, pkm, and independent variables, xim, and the 
error term, eim, reflects differences in tastes, unobservable influences, and such 
like. The MNL model is derived by assuming that the error components (sim) are 
identically and independently distributed, and by maximising utility using the 
traditional economic logic (Hensher and Johnson, 1981). This random utility 
derivation of the MNL model is subject to the normalisation 

I pik = i , 
k 

and the model is derived as 

exp \Lpkmxim\ 

L exp Uu v / v \ 
i l e x p \L,Pimxim\ 

l \m I 

These sorts of model have been widely applied in transport research, but have also 
been adapted to a variety of spatial contexts (see Wrigley, 1985). We will not 
dwell on this, but suffice it to say that equation (5) is a particularly flexible and 
adaptable model structure. 



The fractal simulation of urban structure 1157 

For purposes of estimation and prediction we need to express equation (5) 
rather differently. First we must choose one alternative, say k, as the base or 
numeraire, and express equation (5) as 

Pit = p ; • (6) 
1 + £ e x p \L(Plm -Pkm)Xin 

l*k L m 

We form the ratio of any two probabilities for different choice alternatives using 
equation (5) and this gives 

Pi 

Pik 

exp \Lpimxim\ 
il _ \m )_ 

exp uLpkmxti 
\ m 

exp in, (7) 

We can now express Pn in terms of the numeraire Pik using equations (6) and (7) 
which simplify to 

Pn = i^exp 

exp 

/-.{film Pkm)X im 
m 

Z-> [Pint ~ Pkm)X in 

(8) 
1 + £ e x p \L(Plm -Pkm)Xin 

l*k Lm J 

When k = /, equation (8) collapses to equation (6). In this paper equation (7) is 
used in estimation whereas model predictions are made using equation (8). 

Estimation theory 
The logarithm of equation (7) is referred to as the log-odds of alternative / versus 
alternative k, and this is the actual equation which is used in estimation. Then 

In (f) 2->\Plm Pkm)Xim £-,MlmXii (9) 

There is a clear interpretation of the parameters in equation (9). If julm is positive, 
the choice of alternative /is more important with respect to the variable xim than the 
choice of alternative k. The reverse is true if julm is negative, and there is no 
difference in importance between choices if /xlm = 0 . 

The model parameters in equation (9) are usually estimated using weighted least 
squares or maximum-likelihood, and here we prefer to use the latter because of the 
availability to us of Hensher's BLOGIT computer package (Hensher and Johnson, 
1981). To assess goodness of fit we also require the data set of actual choices 
made which is given as Fik, where Fik = 1 if individual / actually chose alternative 
k, and Fik = 0, if this choice was not made. We calibrate the model by 
maximising the log-likelihood which is given as 

U0) = I > * l n P l t , (10) 
i,k 

and we can also assess the fit as a variation of this likelihood function. A null 
hypothesis can be set up in which film = 0 , V/,m implying no variation across 
individuals, that is, Pik = Pk, W. This can be used to compute the null-likelihood 
from equation (10) which is given as 

L(0) = YJFik\nPk = E w * l n A (11) 
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Figure 3. Simulations of land-use - activity structure in a large city at different levels of recursion. 



Figure 3 (continued) 
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where Nk is the actual number of choices of alternative k made by all individuals 
/. A measure of fit, in some ways similar to the correlation coefficient, is defined 
as p2, where 

p = 1 " E w ' (12) 

which varies between 0 and 1. The statistic can also be modified to reflect 
degrees of freedom, and, typically, good values of p2 range between 0.2 and 0.4. 
In fact, Hensher and Johnson (1981) argue that any model with p2 > 0.2 is likely 
to be acceptable. Other measures of fit and diagnostics for log-linear model 
equations are discussed by Wrigley and Longley (1984), and Wrigley (1985). 

The prediction of model success 
There is a major difficulty in generating less global goodness-of-fit measures for 
discrete choice models. Because the observed data represent discrete choices 
{Fik, Fik = 0 or 1} whereas the predictions are given as probabilities { ^ , 0 < Pik < 1}, 
comparisons at the individual level are meaningless. Thus some aggregation is 
always necessary. One scheme suggested by McFadden (1979) involves computing 
expected choices, that is, the numbers of individuals who originally chose 
alternative k and are expected to choose alternative /. In fact, in later simulations 
we will examine individual predictions but for the applications to London which 
follow, comparisons between observations and predictions will be confined to 
success statistics based on expected choices. 

To introduce these statistics, first note the structure of the observed choice set 
{Fik}. Then by definition, 

YJFik=l, YFik=Nk, TJFik=YJNk =N. (13) 
k / i,k k 

The first equation in (13) implies any individual can only make one choice, the 
second is the constraint on the number of choices made for each alternative, and 
the third simply says that the total number of choices made is the same as the 
number of individuals, N. The analogous structure for the probability set {Pik} is 

S ^ = l , YPik=Nk, ZPik =YNk=N. (14) 
k i i,k k 

Similar interpretations for equations (14) exist as for those in equation (13), but 
note that summation of {Pik} with respect to individuals yields predicted numbers of 
choices, Nk, in contrast to actual numbers, Nk. 

For each individual choice, Fik (where Fik =1 ) , there is a probability, Pih that 
the same individual will make a different choice. The number of such choices 
across all individuals is the number of individuals who originally chose alternative 
k and are expected to choose alternative /, and this is defined as 

Nkl = ZFikPu. (15) 
i 

The set {Nkl} is the so-called predicted success matrix. From equations (13) to 
(15), the matrix has the following properties 

£w*/ = 5 > , * E P , / = N , , (16) 
/ i / 

lNkl = £fe>Ji>„ = # , . (17) 
k i \ k I 
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From these definitions it is also clear that 

ZiV w = YsNk = lNl = N. 
k,l k I 

We can devise a variety of statistics relating to proportions and differences between 
observed and predicted successes using these aggregations. First we can compute 
the proportion of correct predictions, rjk, noting that Nkk gives the number of such 
correct predictions. Then 

Vk = , (18) 
lk Nk

 K ' 
which varies between 0 and 1. Total predictive success occurs when Nkk = Nk, V/c, 
and Nkl = 0, k ^ I. For the entire system the equivalent statistic to equation (18) 
is defined as 

, - Z ^ . (19) 

The second index relates to differences between predicted and observed numbers 
of choices, expressed as proportions or shares. An absolute measure of this index 
is given by Nk — Nk, and its relative form is defined as 

Nk ~Nk 
h = ^ - ^ , (20) 

which can be positive or negative. 
The final index we have computed is called by McFadden (1979) the prediction-

success index, ok. One problem is that if the predicted choices for alternative / 
were much larger than those for the chosen alternative k, that is, if Nt > Nk, then 
the value Nkl would be affected accordingly. To account for this, ok is defined as 

_ Nkk _ Nk 

°k~ Nk N ' 

and an overall index, a, appropriately weighted, is defined as 

v Nk v 

o = L — ok = L 
k N k 

Nkk _ iNk'2 

N \N 
(21) 

The maximum value of a occurs when X A ^ = TV, and then 

amax = 1 - 1 1 fej • (22) 

A normalised measure is given by cr/crmax; other applications are given by Wrigley 
(1985). In the empirical work which follows, these indices will be further adapted 
to aggregations of subsets of individuals located in specific zones; these will be 
presented below. 

Applications to London 
Key variables of urban structure 
Conventional descriptions of urban structure tend to be based on disaggregations 
of urban activities into land use by type and location. One realisation of 
conventional structure was used in the demonstration model presented earlier 
where commercial-industrial (work), residential (living), and open space (leisure) 
activities were treated in a locational framework which emphasised in diverse ways 
the radial and concentric nature of the contemporary city. It is not possible to 
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take this model further to the applications stage here, largely because we do not 
have easy access to a comprehensive land-use - activity database. Moreover, we are 
interested in developing more formally structured discrete choice models which can 
be embedded within the fractal simulation, thus enabling us to assess the impact of 
individual spatial choice behaviour in the larger picture. 

Another consideration which has guided us is not just the absence but the 
availability of data. We have access to a large-scale housing survey—the English 
House Condition Survey (EHCS: DoE, 1978; 1979)—which was conducted in 
1976. This was based on a fairly low sample of households in England, something 
in the order of 1 in 3000, but this represents an easily available, highly disaggregate 
data source and thus we have chosen to make use of it. One of us (Longley), has 
already had experience in calibrating logit models of housing-tenure choice using 
this data set, and the experience gained has been invaluable in orientating certain 
aspects of this project (Longley, 1984). 

We have chosen housing type as the key variable defining urban structure which 
is a major category in the EHCS data. Houses are classified into five types: 
purpose-built flats, converted flats, terraced houses, detached or semidetached 
houses, and a miscellaneous group. House type is a particularly clear way of 
representing urban structure, for different areas of the city are often perceived 
generally in terms of house type; historically, cities have grown reflecting different 
house types, and house type seems to relate to how far people wish to live from 
the CBD. Cities are often articulated as spatial patterns, with flats near the centre, 
terraced houses occupying the inner suburbs, detached or semidetached the outer 
suburbs, each ring reflecting a stage in city growth. Thus density and distance 
variables are indirectly reflected in house type and in the case of London, this is 
particularly relevant in that the city is strongly monocentric, has a well-developed 
market for flats, and has been economically buoyant for several centuries. In our 
applications, we have in fact excluded the miscellaneous category because it acts as 
a residual category and contained less than 2% of the observations available in the 
database. 

Choice of house type lies at the base of several contemporary theories of urban 
structure which integrate two important constructs. First, in bid-rent theory an 
implicit trade-off in housing decisions is postulated between housing space and type 
versus proximity or distance to central urban functions; and urban growth and 
dynamics (as manifest by filtering, suburbanisation, urban renewal, etc, and as 
expressed in the age of the stock) exhibit an identifiable correspondence with 
distinctive dwelling types such as subdivided central-city houses, suburban 
semidetached homes, purpose-built flats in revitalised inner-city neighbourhoods, 
and so on. The implication is that dwelling and neighbourhood type are clearly 
related to distance from the CBD and the date at which the land parcel was 
integrated (or reintegrated) into the contemporary urban development process. 

Thus age and distance represent key determinants of urban structure. In 
designing the models, it was thought important to keep the variables in the models 
as simple as possible and, at the same time, easily measurable. We also considered 
neighbourhood quality at an early stage, but eventually dropped this to keep the 
model simple; in any case, neighbourhood quality was subjectively specified in the 
EHCS data and thus difficult to predict generally. Age of house in which the 
household respondent resided was available in the survey, but distance from the 
CBD was not, and this constitutes a problem. Each individual was not coded by 
exact location in the data set but located by borough of which there are thirty three in 
Greater London. What we have done in measuring distance is to locate a centroid in 
each borough and use airline distance from this to a point in the City of London. 
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Another consideration involved the fact that when we embed the discrete 
choice models into the large-scale (fractal) simulations, we require data on age of 
housing and distance to the CBD at every conceivable point of residential 
development in Greater London. These data are amongst the easiest to obtain 
from independent sources. We used an age distribution for housing measured over 
seven levels available from the Greater London Council (GLC) Intelligence Unit 
Library. Distance is measurable directly from the map and neighbourhood quality, 
although available from the GLC, did not appear to match that used in the EHCS 
and was thus excluded at an early stage of model estimation. 

The general form of the models we have estimated, in log-odds form, is 

l n - ^ = jul0 +junDn +iinA * e Zn, / = 2, 3,4 , (23) 

where Zn is the spatial definition of the borough n. The log-odds equation is 
normalised with respect to the probability of choosing a purpose-built flat, Pn, and 
the other choices involve converted flats (/ = 2), terraced houses (/ = 3), and 
detached or semidetached homes (/ = 4). At is the age of the dwelling in which 
individual / resides, and Dn is the distance from the CBD to the centroid of the 
borough in which individual / resides. 

In essence, we assume that Di is unobserved and that equation (23) is an 
appropriate approximation to the underlying discrete choice model analogous to 
equation (23) in which D, replaces Dn. Equation (23) will only be acceptable if Dn 

is the mean distance, and the sum of the differences around Dn in the borough 
cancel. Formally, if £>, = Dn + £,-, where £, is the 'error' difference between the 
mean and the actual distance to individual /, the average Dn can be defined in 
terms of D{ as 

I % = Dn + I ^ , (24) 
i*zHNn i*z„N„ 

where Nn the number of individuals in Zn. Quite clearly, the mean will only be 
equal to Dn if YJ£I

 = 0 (z e Zn\
 t n a t is> ^ t n e errors around the mean are self-

cancelling in total. We cannot explore the detailed implications of this aggregation, 
but it is important to further research. Discrete choice theory is strangely deficient 
in clear discussion of the spatial aggregation problem, with the exception of 
important work by Anas (1981; 1982). 

Before we broach questions of model selection and estimation, we will sketch 
how the model we are working with could be developed in nested fashion, to 
account not only for the aggregate form of the distance data but also for more 
substantive questions related to the sequence of spatial decisionmaking. Because 
distance to CBD is only available at borough level, it might make sense to 
conceive the house-type - residential-location process as one in which a choice of 
neighbourhood type is made first on the borough (Zn) level, in terms of neighbourhood 
quality and distance from the CBD, and then the choice of house type made at the 
individual location with respect to age. Such a model could be written as 

P = P P 
•*• i q k ± iq ik\q > 

where Piqk is the probability of an individual / choosing neighbourhood type q and 
house type k, Piq is the probability that the individual chooses neighbourhood type 
q at borough level, and Piklq is the probability the same individual then chooses 
house type k, having chosen neighbourhood type q. Such a sequence could be 
structured so that the fractal simulation enabled neighbourhood type to be chosen 
at an appropriate level of fractal resolution, and house type at a lower level. 
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Although neighbourhood type is predicted here, this could be suppressed if it were 
regarded as only an intermediate variable of little visual significance. There are 
many issues to resolve here, but some work along these lines in an industrial 
location context by Hayashi and Isobe (1985) looks promising, as does the 
theoretical work of Roy (1983). Nested models of this type will be pursued in 
further research. 

Model selection and estimation 
We developed a number of preliminary specifications of the model before we 
decided upon equation (23). We first estimated some models based on housing 
tenure, but then dropped these in favour of house type when our ideas relating to 
urban structure became clearer. We began with five categories of house type 
including miscellaneous, but dropped this when it appeared nonsignificant in 
explanation. We then estimated the house-type model with all combinations of up 
to three exogenous variables: age and distance which we eventually selected, but 
also neighbourhood quality. With three variables, there are seven models which 
can be specified, and the global fit of each of these seven is given in table 1. 

By far the best of the models are the two which included the age and distance 
variables. These models are the only ones which reach the threshold of acceptability 
in which p2 > 0.2, suggested by Hensher and Johnson (1981). The best model 
also includes neighbourhood quality, but the percentage increase in fit, between the 
model without this variable and that with, is less than 5% and thus neighbourhood 
quality has been omitted. Other reasons relate to the fact that neighbourhood quality 
is difficult to produce in a consistent and comprehensive database for London, and 
to the fact that we have severe memory problems in our fractal simulations which 
mean we need to hold both input and output data in screen memory simultaneously. 
This limits the number of variables we can deal with, and thus neighbourhood 
quality was felt to be dispensable. 

We will now examine the discrete choice model estimated for the age-distance 
variables in equation (23). The three fitted equations are given as follows, where 
for purpose-built flats / = 1, for converted flats, / = 2, for terraced houses / = 3, 
and for detached or semidetached houses / = 4, 

In — = - 4.862 + 0.034 Dn + 0.067 A, , (25a) 
\Pi\) [-7.984]* [0.754] [10.599]* 

(0.609) (0.045) (0.006) 

In — = -3 .605 +0.177 £>„+0.052,4, , (25b) 
V*i\] [-9.818]* [6.735]* [11.439]* 

(0.367) (0.026) (0.005) 

Table 1. Global fits of models incorporating age, distance, and neighbourhood quality. 

Independent variables p2 

Age 0.118 
Distance 0.089 
Neighbourhood quality 0.069 
Age and distance 0.207a 

Age and neighbourhood quality 0.123 
Distance and neighbourhood quality 0.095 
Age, distance, and neighbourhood quality 0.218a 

a Acceptable models within the Hensher-Johnson limit, p2 > 0.2. 
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and 

In — = - 5.737 + 0.354 D„ + 0.046 At , (25c) 
\Pnj [-12.143]* [11.379]* [9.102]* 

(0.472) (0.031) (0.005) 

p2 = 0.207, N = 809, 

where ^-statistics are given in square brackets, standard errors are given in round 
brackets, and * denotes a significant r-statistic. 
Note that the log-odds is essentially the log-likelihood that individual i will select 
the numerator alternative rather than the denominator alternative. In view of the 
aggregated nature of the distance data, the p2 of 0.207 indicates a reasonable degree 
of overall fit, and the variable parameters and their corresponding ^-statistics lend 
support to our a priori expectations. Equations (25b) and (25c) imply that terraced 
and detached or semidetached houses are both likely to be further from the CBD and 
to be older than purpose-built flats; and equation (25a) suggests that converted 
flats are likely to be older than their purpose-built counterparts. 

These interpretations can only be borne out by a full-scale simulation and the 
pattern of coefficients suggests that flats of both kinds are nearest to the CBD, 
and terraced, then detached or semidetached houses are further away, if we assume 
that terraced houses are older than detached or semidetached. As we intend the 
simulation to be entirely spatial, and spatial structure is not apparent from the 
model fits presented so far, we need to see how well the models perform spatially 
at an aggregate level. The obvious level on which to perform such spatial analysis 
is the borough, for it is at this level that all the model variables are similarly 
aggregate. We will present our analysis visually in the next section where the 
predictive success indices of the models are mapped for the thirty-three boroughs. 

Model performance and reestimation 
We have already shown that it is necessary to aggregate individual predicted 
probabilities so that we can enable some comparison with the observed data. To 
this end, we introduced McFadden's (1979) predicted success matrix in equations 
(13)-(17), and then presented various indices of success in which correct proportions, 
and differences between observed and predicted choices were computed in 
equations (18)-(22). However, it is possible to compute equation (15), the numbers 
of persons originally choosing house-type k and predicted to choose house-type /, 
for subsets of individuals, in particular individuals residing in certain zones, in this 
case boroughs, Zn. In all the indices which follow, Nkl is replaced with 

Nkln = E FikPil9 (26) 

where Nkln is the number of individuals originally choosing house-type h and 
predicted to choose house-type / in borough Zn. 

The proportion of correct predictions defined in equations (18) and (19) for the 
whole of Greater London can act as a basis for comparison with their zonal 
equivalents. These statistics were computed using the model in equations (25) as 

tji = 0.533, rj2 = 0.198, n3 = 0.433, r/4 = 0.397 . 

These indices seem rather low; only in the case of purpose-built flats is there a 
better than 50% success rate, and converted flats are poorly predicted. The overall 
percentage of correct predictions from equation (19) is computed as rj =0 .432 , 
which is an appropriate average of {rjk). The spatial (zonal Zn) equivalents of rjk, 
called rjkn, are mapped across the thirty-three boroughs in figure 4. (Note that in 
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Histogram 

(b) 
Figure 4. 
flats, 

Proportions of correct choices of house type: (a) purpose-built flats, (b) converted 
terraced houses, (d) detached or semidetached houses. 
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Figure 4 (continued) 
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Histogram 

(a) 

Histogram 

(b) 

Figure 5. Differences in observed and predicted housing choices: (a) purpose-built flats, 
(b) converted flats, (c) terraced houses, (d) detached or semidetached houses. 
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Figure 5 (continued) 
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all these types of map, the City of London Borough does not contain any observations 
and thus is not shaded). These percentage correct predictions show a much wider 
range of variation. In general, purpose-built flats are better predicted closer to the 
CBD, whereas the reverse holds for detached or semidetached houses. The 
distribution of converted flats generally shows a low percentage correct prediction, 
with a slight increase towards the CBD, whereas terraced houses show a less 
distinctive spatial pattern with a slight increase in performance towards the 
periphery. In fact, figure 4 contains the clearest demonstration we have that 
individual choice behaviour varies spatially. The obvious conclusion is that there 
are two sets of models, one for inner, the other for outer London, but before we 
consider these further, we will examine other indices of predictive success. 

Indices of the percentage difference between observed and predicted choices 
given by equation (20) {</>k} have been computed in spatial equivalent form and are 
mapped in figure 5. The patterns are much less clear than those in figure 4. For 
purpose-built flats, the largest differences are in the inner suburbs, and the smallest 
in the centre and the west. For converted flats the pattern is much more random, 
with a slight bias towards higher differences in the inner suburbs. For terraced 
houses, the inner suburbs show higher levels of under-and overprediction of shares, 
whereas the outer suburbs display the greatest differences in the case of detached 
or semidetached houses. These maps are more difficult to interpret than their 
counterparts in figure 4. What they do show, however, is that there are both sectoral 
and concentric-geometric spatial biases in the pattern of predictions, which can only 
be accounted for by the addition of new and different explanatory variables (and 
the possible deletion of one of the existing ones), or by the development of models 
which accept these spatial differences. We will pursue the latter course. 

To conclude, it is useful to examine the pattern of overall correct predictions 
from equation (19), computed and mapped spatially, and this is presented in 
figure 6. The best predictions are recorded in and near the centre and in the 
outermost suburbs. This suggests the need for two separate models of individual 
choice behaviour, one for inner zones, the other for outer zones. The need for 
this distinction is even clearer when the normalised success index computed from 
the spatial equivalents of equations (21) and (22), and defined as an/o

m™, is 
examined. This is mapped in figure 7, and shows that the best predictions occur 
nearest the CBD, the worst in the far western and eastern suburbs. On this basis, 
we decided to reestimate our models based on equation (23) for inner and outer 
London, where inner London is based on the thirteen boroughs which constitute 
the Inner London Education Authority (ILEA). 

The sample size of 809 observations was divided into 337 based on the inner 
boroughs, the remaining 472 comprising the outer boroughs. First equation (23) for 
the inner boroughs was estimated as 

In — = -5 .446 +0.194 Dn +0.061 A , (27a) 
\Pi\j [-5.849]* [1.478] [8.305]* 

(0.931) (0.131) (0.007) 

In — = -5 .106 +0.430 Dn +0.050 A , 
\pnl [-7.046]* [4.106]* [8.722]* 

(0.725) (0.105) (0.005) 

In — = -7 .430 +0.546 Dn +0.050 A , 
\Pnl [-5.810]* [3.203]* [5.767]* 

(1.279) (0.171) (0.009) 

(27b) 

(27c) 

p2 = 0.228, 7Vinner = 337, 

file:///Pi/j
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Histogram 

Figure 6. Proport ions of correct choices of house types. 
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Figure 7. Overall normalised success indices, on/o
maZ, for all house types. 
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and the appropriate equation for the outer boroughs was estimated as 

In 

In 

In 

P2 

— = -5 .119 +0.030 Dn 
\Pnl [-3.307]* [0.280] 

(1.548) (0.106) 

— = -1 .300 - 0.009 Dn 
[Pill [-1.754] [0.170] 

(0.741) (-0.051) 

1— = -3 .537 +0.186 Dn 
\Pi\l [-4.740]* [3.816]* 

(0.746) (0.049) 

= 0.106, 7Vouter = 472. 

+ 0.075 A 
[6.514]* 
(0.012) 

+ 0.059 A 
[7.450]* 
(0.008) 

+ 0.051 A 
[6.538]* 
(0.008) 

(28a) 

(28b) 

(28c) 

What becomes apparent in terms of the /- and p2 -statistics is that the inner 
London model [equations (27)] performs very much as the original model 
[equations (25)] whereas the outer London results are rather different. 
Equation (28) reflects a diminished role of the distance variable (two of its 
associated /-statistics are insignificant, and one parameter exhibits an unexpected 
sign) which contributes towards a much lower p2 goodness-of-fit measure. We 
might rationalise this in terms of our previous land-use theory as follows: although 
difficulties of accessibility constrained the physical growth of London up until 
World War 1, the subsequent innovation of mass transit and the automobile rapidly 
opened up large tracts of land for development. 

Because most of this development occurred over very large areas, the form of 
physical development is much less likely to exhibit a very close and identifiable 
correspondence with distance from the CBD. Reestimation of our model for outer 
London without the distance variable yields 

(29a) 

(29b) 

(29c) 

The p2-statistic is less than that for equations (28) and thus the model has not 
been used in the simulations which follow. At this point, we can conclude our 
section on estimation. Many avenues remain unexplored, but several models have 
been tested and we will take forward those in equations (25), (27), and (28). 

Fractal simulation of house type and location 
The graphics database 
One of the more obscure reasons for developing such a simplified model based on 
age and distance can now be made clear. Age is a spatially extensive variable, 
whereas distance is a property of space itself. Thus it is possible to display a 
single map shaded according to age from which distance can also be read, in 

In 

In 

In 

P2 

— = -4 .695 +0.075 A 
\Pnl [-7.388]* [6.490]* 

(0.635) (0.011) 

— = -1 .399 +0.059 A 
\Piil [-4.990]* [7.470]* 

(0.280) (0.008) 

— = - 0 . 8 8 1 +0.048 A 
\Pnl [-3.347]* [6.241]* 

(0.263) (0.008) 

= 0.078, 7Vouter = 472, 

file:///Pi/l
file:///Piil
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particular, distance to some fixed point from any other. If we had more than a 
single extensive variable, age and neighbourhood quality say, these could not be 
represented on the same map in easily codable form. Clearly, it is useful for ease 
of interpretation to have a single map of input data, for this can be directly 
associated with a map of the outputs from the models. 

In fact, the need to store data in map form is essential, for the fractal simulation 
operates on a graphics microcomputer in which only 8K of memory is available for 
program and data, 20K of memory being given over to the graphics screen. 
Although it could be possible to store data on disc, and thus include a larger 
number of independent spatial variables, the continual reading and writing required 
would make the operation of the model prohibitively slow. In fact, because the 
data are spatially extensive, it is essential to store them in screen mode, for the 
resolution we are working with involves 160 x 256 pixel points which makes any 
form other than screen storage extremely problematic. The data on age are thus 
stored as a screen map, and airline distance is easy to compute as a function of 
screen coordinates which in turn are a function of the screen addressing. 

The age data were made available by the GLC Intelligence Unit in seven age 
groups which were coded in grid fashion, and coloured in the screen memory 
according to the age group. The screen map is shown in figure 8 (on the coloured 
pages). The following average ages in years define the seven ranges in question: 
- 8 - 2 6 - 4 8 - 7 8 - 1 1 0 - 1 5 0 - 1 7 5 - . These represent weighted 
averages which reflect the distribution of housing in any grid square. Distance 
from the CBD to borough centroids is measured in kilometres, the GLC boundary 
being about 24 km maximum from the City and the ILEA boundary used for the 
inner London model being about 13 km distant. Note also that the shape of urban 
development in London is coded into the data through grid squares coloured on a 
black background which does not contain housing. These represent 'vacant' land in 
the sense used earlier, although in these applications the model in no way predicts 
this. 

The way the simulation works involves first loading the age map into the screen 
memory from file. Then the fractal simulation begins in the order used previously 
in the demonstration model, and when the appropriate level of fractal detail is reached, 
the program retrieves the colour of the centroid of the triangle space reached 
from the screen, converts this into an age value, computes distance, and uses these 
variables in the model structure based on equation (23) to compute the probability 
of house type. Thus the simulation works by replacing the regular gridded age 
map by the irregular fractal land-use pattern in an almost literal sense. This is a 
rather innovative technique, for input is immediately converted to output and this 
occurs directly 'before your eyes'. In a sense, it is a version of the WYSIWYG 
principle ('what you see is what you get') which is central to many operations with 
graphics computers. A note on technical detail is required. The machine in 
question is a BBC Micro, the simulation operating in mode 2 (screen resolution 
160 x256 pixels) with sixteen colours. Eight colours are reserved for the age map 
(seven ages and one vacant land use) and five are used in choosing house type 
(four types and one vacant land use). The process of replacement is not as clear 
as it might be because only eight absolute colours are available, hence the 
replacement of the input map with the output map uses similar colours and is only 
distinguished in terms of its irregularity. A quick idea of the simulation is achieved 
if it is run with recursive level r = 0, or r = 1. 
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Figure 8. T h e graphical database: age of housing in London. 
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Random and deterministic simulations 
The process of fractal simulation is essentially the same as that used previously in 
the demonstration. The only difference relates to the way the input data are 
stored and sampled and the way the probability models are developed. Four land-
use types based on housing, rather than three based on activities, now form the 
simulated urban structure. The area over which the simulation is operated is fixed 
and, in a sense, residential location is already predetermined through the data, and 
thus it is only house type by location which varies. 

We have already noted that two model structures are to be used: that based on 
the whole of Greater London, which uses equations (25), and that based on the 
distinction between inner and outer London, which uses equations (27) and (28). 
In these simulations, we work at recursive level r = 4 which essentially fixes fractal 
detail at just above the pixel level of the screen. Each simulation takes about 3 
hours and involves examining 10 x 4 r + 1 = 10240 randomly positioned contiguous 
triangles which form the network of fractal detail at the lowest level of resolution. 
In fact, the models are based on 809 data points, and in the area in question there 
are in excess of 3 million households, thus the simulation itself is still very much in 
the nature of a sample-style exercise in which an 'average' individual residing at the 
lowest level of fractal detail makes a house-type choice which is then assumed to 
be typical of all individuals at that level and in the space which contains that location. 

The other issue involves the conversion of probabilities {Pik} into discrete choices. 
In the demonstration model, a random simulation was adopted in which choice of 
land use was accomplished according to the probability range fixed by the land-use 
models but ultimately determined using a random number device. The resultant 
outputs were very satisfactory because the probability profiles were quite distinct, 
thus enabling fairly clear decisions to be made and characteristic spatial patterns to 
emerge. Here, however, the probability profiles of the house-type models are much 
less different from one another, and thus to develop clearer spatial patterns, we 
have also introduced a deterministic simulation. This simulation is based on 
choosing a house type according to the rule 

type - max{ /y , (30) 
k 

which simply makes the choice according to that alternative which has the 
maximum probability for individual i. 

We can now show the simulations. We first present the random simulations 
which are based on equations (25), then equations (27) and (28). These are shown 
in figures 9(a) and 9(b), respectively (see coloured pages), and the main impression 
is one of massive variability of house type in spatial terms. There is almost a 
complete mix of types everywhere for both types of equation, thus implying that 
the relative evenness and similarity of the probability profiles gives much greater 
weight to the lower probabilities in each choice situation than would be the case in 
a real context. Little spatial pattern can thus be discerned and this suggests that 
random simulations based on discrete choice models are likely to produce too little 
spatial discrimination if predicted in this way. 

The deterministic simulations which involve equation (30) are shown in 
figures 10(a) and 10(b) (see coloured pages) for the full, and inner-outer models, 
respectively. Very clear spatial patterns emerge this time which show the 
characteristic structure of residential land use in London, but there is little 
difference between the two sets of models. The clearer of the two patterns is 
figure 10(a) based on the full model but there is a ring of purpose-built flats 
between the terraced and detached or semidetached areas which is unexpected. 
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In figure 10(b), purpose-built flats are closer in towards the CBD. Note that in the 
simulations the total number of house choices is not scaled in any way to reflect the 
scale of housing in London; thus this represents an additional prediction from the 
model. The patterns in general, though, are very plausible, reflecting flats, terraced, 
and detached or semidetached houses at increasing distance from the CBD, with 
the distribution of purpose-built and converted flats clearly characterising the market 
for flats in London. One limitation of the deterministic model is that it does not 
pick up the degree of local variation one might expect, but a more detailed 
database might resolve this. 

Last, we have begun to experiment with these simulations. Running the models 
at r > 4 requires the use of a 6502 second processor because the amount of 
program memory required explodes as a result of the recursion, and we have run the 
model for r = 6, which took 24 hours. Level of recursion does affect the pattern 
we get, but generally these help us to improve the recursive geometric generation, 
not the models themselves. Simple policy-predictive runs of the simulations are 
possible, for the input data are easy to update. One could assume a process of 
aging and renewal, varying according to simple rules and policies, which would 
then enable a pseudodynamic simulation to be developed. A series of images of 
the typical house types in London over the next fifty years could be generated in 
this way. But these are for the future and, in any case, there are many other 
improvements to be made before then. These will form our conclusions. 

Conclusions 
The ability to display the overall pattern produced by models with an implicit 
spatial dimension is a clear advantage of the large-scale simulations adopted here. 
But these need not be generated within a fractal framework. Simulation could 
proceed by examining each pixel in turn and building up urban structure in this 
way on a regular spatial grid. Nevertheless, fractals do generate realistic images 
and one of the goals of this work is to make abstract models more visually 
intelligible and acceptable, and in this way, the fractal framework seems promising. 
As such, the technique is one of generating spatial realism and it clearly depends 
upon the display devices used. 

The main problem emerging from this paper, however, relates to the 
development of a more consistent modelling strategy which can be effectively 
incorporated into the hierarchical method used to structure the simulation. We 
have already indicated what is involved: in essence, the hierarchy guiding the 
fractal simulation should be based on characteristics of the city, and this clearly 
relates to the type of explanation and modelling required. Discrete choice models 
show promise here, but so do sequential and nested approaches involving entropy 
models. 

In fact, a more fundamental strategy may be actually to explore the possibility of 
underlying land-use models which are themselves fractal. For example, the sorts of 
terrain model explored by Goodchild (1982) and the image-processing techniques 
developed by Pentland (1984) are suggestive of the types of stochastic model that 
might underly the structure of land use. There are difficulties in that some of the 
patterns are discontinuous, but it is worth exploring how such ideas could be used 
to link what we already know about land use, central place, and rank-size together 
in a fractal framework. With respect to discrete choice models, there may even be 
the possibility of fractal intepretation of the underlying mechanisms which give rise 
to various forms of logit and probit models and there is clearly a possibility that 
questions of nesting and aggregation might be reconciled with ideas about recursion 
and hierarchy. In fact, in this paper, the whole question of the spatial basis of 
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discrete choice models has emerged as problematic and this suggests that further 
research on spatial aggregation and discrete choice is worthy as an end in itself, 
notwithstanding any fractal interpretations which might emerge. 

We need to improve the more practical aspects of the project, mainly the graphics 
computers that are available to us and the database we have access to. We are at 
work now using a graphics device with a much higher resolution and this should 
enable more maps to be held in screen memory, and hence allow more data to be 
used. We hope to reprogram the simulation in Pascal, instead of structured BASIC, 
thus enabling the geometric data structure to be better handled. We intend to continue 
working with the EHCS data, but hope to mount a project on the measurement of 
fractal pattern in land use using cartographic databases. But much will depend on 
the availability of data which will continue to constitute a limitation to this work. 

Many other speculations are possible about where we are headed. An 
interesting project would be to examine the extent to which regular, nonrandom 
fractal patterns built from cell-space models (Tobler, 1979; Couclelis, 1985) could 
be used as first approximations to city patterns. We also need to consider how 
such simulations might be made dynamic, especially as there is an obvious dynamic 
process underlying a model in which age acts as an independent variable. In one 
sense, our models might already be seen as explaining urban structure in terms of 
time and space, age and distance, and our earlier comments on possible policy 
simulations endorse this. In particular, the question of redevelopment is central to 
residential location, and any dynamic extension to the framework should enable 
such processes to be captured. These ideas suggest a broad research programme, 
but at present we require a stronger link between exploration and simulation 
through ideas concerning spatial hierarchies, and this should enable a clear 
research strategy to be mapped out to improve upon and extend the realism of 
urban models. 
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