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Abstract. Here we extract the geographical addresses of authors in the Citeseer
database of computer science papers. We show that the productivity of research
centres in the United States follows a power-law regime, apart from the most
productive centres for which we do not have enough data to reach definite
conclusions. To investigate the spatial distribution of computer science research
centres in the United States, we compute the two-point correlation function of the
spatial point process and show that the observed power laws do not disappear
even when we change the physical representation from geographical space to
cartogram space. Our work suggests that the effect of physical location poses a
challenge to ongoing efforts to develop realistic models of scientific productivity.
We propose that the introduction of a fine scale geography may lead to more
sophisticated indicators of scientific output.
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1. Introduction

In the last decade, the analysis of mankind’s scientific endeavour has become a rapidly
expanding interdisciplinary field. This has been mainly due to the advent of comprehensive
online preprint servers and paper repositories, from which patterns of productivity and
collaboration networks of individual scientists can be readily ascertained [1]. The vast
amount of available data raises the hope that scientists and policy makers will soon be able
to gain unprecedented insights into the location of research centres and their productivity.
Indeed, little is known today about the influence that geographical location may have on
‘invisible colleges’1 (but see [3, 4]). Conversely, we are only just beginning to uncover how
the historical growth of these ‘invisible colleges’ generates heterogeneities in the physical
location of research centres and, therefore, of the scientists themselves.

Previous investigations of bibliometric data [5] by physicists have followed two main
directions. On one hand, efforts have focused on characterizing the topological structure
of collaboration networks [6]–[9]. On the other, researchers have used tools of statistical
physics to gain insight into the growth dynamics of scientific outputs [10]–[12]. Despite
this considerable progress, the relation of collaboration networks to the productivity of
scientists depends on the still poorly understood fine geographical location of research
centres.

Matia et al approached the challenge of characterizing institutional productivity by
analysing 408 US institutes for the 11 year period 1991–2001 [12]. They observe a bimodal
distribution and conjecture that this is indicative of a clustering effect of institutes of two
different size classes [12].

The characterization of spatial structures at large geographical scales has a long
tradition. In 1971, Glass and Tobler were the first to apply the radial distribution function
(or two-point correlation function, as it is known in astrophysics [13]) to the study of cities
on a part of the Spanish plateau [14, 16]. They choose a 40 mile square, homogeneous
in town size and density, and apply concepts developed in the study of the statistical
mechanics of equilibrium liquids. Although their analysis does not detect clustering, we

1 An invisible college is a loose network of researchers who ‘communicate with each other and transmit information
across the whole field (...) to monitor the rapidly changing research “front”.’ [2, p 35].
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would expect the two-point correlation function to reveal patterns of concentration and
clustering in data whose population sizes vary over many orders of magnitude.

Recently, Yook et al showed that the nodes of the Internet are embedded on a fractal
support driven by the fractal structure of the population worldwide [17]. This suggests
that, in spatial networks with strong geographical constraints, the nodes may not be
distributed randomly in space [18], but may be clustered as a function of population
density. Further, Gastner and Newman presented an algorithm based on physical diffusion
to draw density equalizing maps, or cartograms, in which the sizes of geographic regions
appear in proportion to their population or some other property [19]. Cartograms give
us a tool for probing into the dependence of one spatial variable (e.g. cancer occurrences)
upon another (e.g. population). In particular, processes which are spatially clustered, but
dependent on population densities, are expected to display random spatial distributions
once the data are transformed by the cartogram [19, 20].

In order to bring the productivity of research centres and their spatial interaction
patterns under a single roof, we follow an approach that is different from, but
complementary to the ones presented above. Indeed, research centres are not
homogeneously distributed in geographical space and it is likely that location will impact
on their productivity and the structure of collaboration networks. However, to fully
understand the role of location on the production of science and its networks, one must
first characterize the underlying spatial processes, and this is the road we take here. We
therefore investigate scientific productivity as a function of fine scale geographical location.
Furthermore, to underpin these results, we characterize the spatial point process generated
by the physical location of research centres.

To investigate the role of fine scale geography in the production of science, one needs
to analyse a large data set. Traditional investigations of bibliometric data have been
carried out by analysing databases like PubMed, arXiv.org or Thomson ISI. However,
these databases suffer from drawbacks. Either the data contain only the address of the first
(PubMed) or corresponding author (arXiv.org), or researchers are not uniquely associated
with their addresses (Thomson ISI).

A more promising source of data is the Citeseer digital library, created in 1998 as
a prototype of Autonomous Citation Indexing [21]. Citeseer locates computer science
articles on the web in Postscript or PDF format and extracts citations from and to
documents [22]. Citeseer has made its metadata available online [34] and the inclusion
of an address and affiliation fields for each author allows a first rigorous analysis into the
geography of a very large bibliometric database.

2. Spatial structure

We studied the Citeseer metadata, which contains 716 772 records, some of which are
repeated and some of which have authors with empty address fields. We considered the
N = 379 111 (52.9%) unique papers for which citeseer identifies all authors and their
respective addresses. Out of these N unique papers, we analysed the M = 128 348
(pUS = 33.9%) papers which have one or more US authors. Interestingly, pUS, is in
reasonable accordance with Thomson ISI global indicators, which state that between 1997
and 2001, the United States output 34.86% of the world’s highly cited publications [23].

doi:10.1088/1742-5468/2006/10/P10012 3
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Table 1. Most productive ZIP codes and respective universities.

Rank Zip Fractional count Institution

1 15213 2343.36 Carnegie Mellon University
2 02139 1891.18 MIT
3 94305 1512.12 Stanford University
4 94720 1496.76 University of California, Berkeley
5 20742 1144.70 University of Maryland, College Park

For each paper, we extracted the five-digit ZIP code from each author’s address field
and geocoded this ZIP into a (latitude, longitude) pair of coordinates [35]. We identified
ZIP codes from the address field, by using regular expressions to match a five-digit code
(plus the optional four digit code, which we ignored) preceded or followed by a US state (or
its abbreviation) or the acronym USA. This will leave out addresses like Roma 00185, Italy
or Israel 84105, but will also fail to locate the address Physics Department, Northeastern
University, Boston MA USA as it lacks a ZIP code. We restricted the analysis to the 48
conterminous US states plus the District of Columbia.

We identified a total of 116 771 distinct authors with a US address. Out of these,
103 928 (89%) list a single ZIP code in their address, 10 579 (9.1%) belong to institutions
located in two ZIP codes and 2264 (1.9%) are located in three or more institutions.

2.1. Productivity of research centres

To investigate the concept of scaling in publication output of academic research centres, we
computed the probability distribution of total paper output per ZIP code. We note that
ZIP codes were not aggregated. If two research centres belonging to the same institution
have addresses with distinct ZIP codes, we considered them as distinct centres. This
has the disadvantage of possibly counting more than one research centre per institution
(instead of aggregating both to the same institution). However, Citeseer covers scientific
articles in the field of computer science and it would be the exception that one institution
would have several geographically separated computer science centres.

Our analysis identified 3393 different ZIP codes that matched the US census bureau
tables. We implemented a version of fractional counting [5, 24] to compute the productivity
of US research centres. For every paper, we parsed each author’s address field and
extracted the ZIP codes therein (there may be more than one ZIP, if the author belongs
to more than one US institution). Each occurrence of a ZIP code in an address field of
a paper increments the productivity of the research centre physically located at that ZIP
code by 1/φ, where the normalization factor φ is computed as follows. For every address
field in the paper being analysed, we made φ := φ+1 if the address contains no ZIP codes
(i.e. it is a non-US address), or φ := φ + m if the address contains m ≥ 1 ZIP codes (in
which case that specific author will belong to m distinct US institutions).

Identifying research centres by ZIP code has the advantage of simplifying the data
parsing algorithm, which is why we preferred this method to others based on aggregation
by host institution. However, the method is an approximation, as it cannot distinguish
between non-US addresses.

Table 1 displays the five most productive ZIP codes and their host institutions.
Interestingly, the two most productive institutions, Carnegie Mellon University and MIT
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Figure 1. Probability distribution of paper output (fractional counts) per ZIP
code. (a) The probability density is bimodal and can be approximated by a
power-law regime between the two local maxima. (b) A least squares fit to the
linear region of the cumulative distribution yields α = 1.55. The inset shows the
Hill plot [25] as the number of upper order statistics, k, is varied. The match
between the plateau on the Hill plot and the least squares fit (dashed horizontal
line) shows that our estimate of α is appropriate.

are also the two most acknowledged entities as shown by Giles and Councill in a previous
study [21].

We then asked the question: what is the probability distribution of the research
output of each research centre? To investigate this, we plot the probability density and
cumulative distribution (P [X > x] =

∫ ∞
x

p (y) dy) in figure 1. We found a bimodal
probability distribution of research output by ZIP code (see figure 1(a)), in agreement
with a previous study of the Thomson ISI database by Matia et al [12].

Our results suggest that this probability distribution displays power-law decay up
to the ‘knee’ where the regime changes. The data were insufficient for determining
whether the upper tail of the distribution also decays as a power law, albeit with a

doi:10.1088/1742-5468/2006/10/P10012 5
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different exponent. This observation is in apparent contradiction with the findings of
Matia et al who do not find a power-law regime. The authors examine the productivity
of 408 US institutes, whereas our method revealed that papers had been output at 3393
US institutes. Therefore, the power-law decay which we observed may be due to our
methodology which included all research institutes in the metadata. On the other hand,
our analysis was limited in scope to the Citeseer database, whereas Matia et al analyse
the Thomson ISI data set, hence comparisons with their wider study are necessarily
inconclusive. Nevertheless, our results raise the question of whether power-law decay
only appears once one is able to identify a large percentage of all research institutes.

2.2. The pulling power of research clusters

A simple point process in R2 may be considered as a random countable set X ⊂ R2. The
first moment of a point process can be specified by a single number, the intensity, ρ, giving
the expected number of points per unit area. The second moment can be specified by
Ripley’s K function [16], where ρK(r) is the expected number of points within distance
r of an arbitrary point of the pattern.

The product density

ρ2 (x1,x2) dA (x1) dA (x2) = ρ2g (r) dA (x1) dA (x2) (1)

describes the probability of finding a point in the area element dA (x1) and another point
in dA (x2), at the distance r = |x1 − x2|, and g (r) is the two-point correlation function.
Ripley’s K function is related to g (r) by [26]

K (r) = 2π

∫
g (r) r dr. (2)

In other words, g (r) is the density of K (r) with respect to the radial measure r dr. The
benchmark of complete randomness is the spatial Poisson process, for which g (r) = 1 and
K(r) = πr2, the area of the search region for the points. Values larger than this indicate
clustering on that distance scale, and smaller values indicate regularity.

The two-point correlation function can be estimated from N data points x ∈ D inside
a sample window W by [27]:

g(r) =
|W|

N (N − 1)

∑
x∈D

∑
y∈D

Φr (x, y)

2πrΔ
ω (x, y) (3)

where 2πrΔ is the area of the annulus centred at x with radius r and thickness Δ.
Here |W| is the area of the sample window, and the sum is restricted to pairs of
different points x �= y. The function Φr is symmetric in its argument and Φr (x, y) =
[r ≤ d (x, y) ≤ r + Δ], where d (x, y) is the Euclidean distance between the two points
and the condition in brackets equals 1 when true and 0 otherwise.

The function ω (x, y) accounts for a bounded W by weighting points where the
annulus intersects the edges of W. There are a number of edge corrections available, but
that of Ripley [15] has a long tradition both in human geography [16] and physics [27]:

ω (x, y) =
2πr

� (∂Br (x) ∩W)
(4)

doi:10.1088/1742-5468/2006/10/P10012 6
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where � (∂Br (x) ∩W) is the fraction of the perimeter of the circle Br (x) with radius
r = |x − y| around x inside W—e.g. � (∂Br (x) ∩W) = πr if only half of the annulus
falls inside W. Note that ω (x, y) = 1 iff ∂Br (x) ⊂ W, in which case the summand in (3)
is simply the sum of Φr (x, y) weighted by the area of the annulus centred at x with radius
r and thickness Δ. If ∂Br (x) ∩W �= ∅, that is the circle Br (x) is only partially in the
sample window W, then Φr (x, y) is weighted by the area of the fraction of the annulus
which is inside W.

Of special physical interest is whether the two-point correlation is scale invariant. A
scale-invariant g (r) is an indicator of a fractal distribution of research centres, and is
expected in critical phenomena [28].

To investigate the presence of power-law decay in the two-point correlation function
we selected the 1046 research centres (ZIP codes) which had a total fractional count of two
papers or more. We chose this productivity threshold for two main reasons. A first factor
was to consider only research centres which can be clearly identified as active. Second, the
computation of the two-point correlation function requires reasonable computer resources
as W is a fine boundary of the United States—in our case, a polygon with 14 605 points.

Next, we projected the US map and the (latitude, longitude) pairs of the research
centres with the Albers’ equal area projection [29, 36] and computed the two-point
correlation function, g (r), of the resulting point process.

To investigate whether the decay of g (r) is a function of the distribution of R&D
funding or population, we applied several cartogram transformations to the base map
and the points: first, we computed the cartogram projection using US R&D funding
expenditure, by state, for the year 2001 [30, table B-17]; second we computed the
cartogram with US population, by state and county, from the 2000 census [37]. The
points representing the research centres were transformed accordingly to each cartogram.
Figure 2(a) shows the Albers’ equal area projection and each centre is represented by
a circle with area proportional to the number of papers output on a logarithmic scale.
Figures 2(b)–(d) show the cartograms with R&D expenditure by state, and population
by state and county, respectively. It is obvious from these maps that as the cartogram
transformation uses finer spatial scales (e.g. from US states to counties), the points become
more homogeneously distributed spatially.

The two-point correlation function computed for the projected data (see figure 2(a))
is plotted in figure 3, where we observe a power-law decay g (r) ∼ r−γ with γ 	 1.16.
Next we asked the following question: can the power-law decay of g (r) be explained by a
clustering of research centres in areas where research funding or population is higher? To
answer this question, we computed g (r) for the same point process, but now using the data
transformed by the cartograms with R&D expenditure by state (figure 2(b)), population
by state (figure 2(c)), and population by county (figure 2(d)). Our results showed that
the power-law decay was still present after the cartogram projections, although as the
transformation was performed at finer spatial scales, g (r) approached the expected value
for a Poisson process, g (r) = 1, at shorter distances.

3. Discussion

Considerable advances have been made over the past few years in understanding the
structure of scientific production and its networks. Along this road, physicists have

doi:10.1088/1742-5468/2006/10/P10012 7
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Figure 2. (a) Albers’ equal area projection of the 48 conterminous states of the
US plus the District of Columbia. Research centres are identified by circles with
area proportional to their productivity on a logarithmic scale. ((b)–(d)) Data in
(a) after a cartogram transformation with R&D expenditure by state (b), and
population by state (c) and county (d), respectively. For each panel, we trace the
14 605-point border polygon used in the computation of the two-point correlation
function.

computed a number of quantities for characterizing networks of scientific collaborations,
mainly by analysing data from online preprint servers and repositories. However, these
studies have not addressed the impact of fine scale physical location on the statistical
characterization of the scientific enterprise and its networks. Here we have presented a
detailed study of the productivity of research centres in US computer science (identified
by ZIP codes) and characterized the pattern of spatial concentration which these centres
display.

A first important conclusion of our study is that the productivity of US research
centres in computer science was highly skewed. A surprising result of our study was
the power-law decay of the probability distribution of research output for some orders
of magnitude. A second important conclusion is that the physical location of research
centres in the US formed a fractal set, which was not completely destroyed by population
or research funding patterns.

Although we consider our results to be promising, there are still several caveats.
First our conclusions are clearly only valid for the US [12, 31] and even from the Citeseer
database, which we consider is the best currently available for such analysis, there are
problems of missing and inaccurate data which we are not able to quantify. Nevertheless,

doi:10.1088/1742-5468/2006/10/P10012 8
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Figure 3. Variation of the two-point correlation function with distance (km).
In blue, g (r) computed from projections of the border and the points with the
Albers’ equal area projection. In red, green and black, g (r) computed from
further transforming the data by the cartogram projection with R&D per state,
population per state and county, respectively. The horizontal line at g = 1 is the
expected value of g (r) for a Poisson process.

our results are consistent with those from the burgeoning geography of information
technology which suggests in qualitative fashion, that such technologies are correlated
with population but also have their own dynamic [32, 33]. In this sense, our result that
the scaling inherent in the geographical distribution of paper production in US computer
science is still present once the geography has been normalized with respect to the
distribution of population and R&D expenditures, implies processes that are endogenous
to the dynamics of research [11].

In summary, the method introduced in this paper could serve as a starting point for
an investigation of the role of the fine scale physical location of research centres in the
production of science. Our study focused on US computer science but further analyses
should be possible as preprint server repositories make more elaborate metadata available.
And such developments may lead to a better understanding of the role of physical location
not just in science, but for a much wider class of complex spatial systems.
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