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This paper is concerned with building up methodological guidelines for

modelling urban land-use change through Geographical Information Systems,

remote sensing imagery and Bayesian probabilistic methods. A medium-sized

town in the west of São Paulo State, Bauru, was adopted as a case study. Its

urban structure was converted into a 100 m6100 m resolution grid and transition

probabilities were calculated for each grid cell by means of the ‘weights of

evidence’ statistical method and upon the basis of the information related to the

technical infrastructure and socio-economic aspects of the town. The probabil-

ities obtained from there fed a cellular automaton simulation model—

DINAMICA—developed by the Centre for Remote Sensing of the Federal

University of Minas Gerais (CSR-UFMG), based on stochastic transition

algorithms. Different simulation outputs for the case study town in the period

1979–1988 were generated, and statistical validation tests were then conducted

for the best results, employing a multiple resolution fitting procedure.

This modelling experiment revealed the plausibility of adopting Bayesian

empirical methods based on the available knowledge of technical infrastructure

and socio-economic status to simulate urban land-use change. It indicates their

possible further applicability for generating forecasts of growth trends both for

Brazilian cities and cities world-wide.

1. Introduction

Recent generation models of urban dynamics have dealt with diverse themes.

According to Batty (2000), there are currently some twenty or more applications of
cellular automaton (CA) models to cities, such as in the diffusion or migration of

resident populations (Portugali et al. 1997), competitive location of economic

activities (Benati 1997), joint expansion of urban surface and traffic network (Batty

and Xie 1997), generic urban growth (Clarke et al. 1997) and urban land-use
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dynamics (Deadman et al. 1993, Batty and Xie 1994, Phipps and Langlois 1997,

White and Engelen 1997, White et al. 1998), amongst others.

Specifically regarding urban land-use dynamics, it is possible to identify three

basic trends of CA models in respect to their balance between stochasticity and

determinism. The first one concerns the predominantly deterministic models, whose

most evident representative is the urban growth study for the San Francisco Bay

area, conducted by Clarke et al. (1997). Although this model incorporates a certain

randomness in selecting the cells for urban growth and in promoting the spread of

growth seeds, its transition rules, which can be spontaneous, diffusive, organic or

road-influenced, are fundamentally deterministic in the sense that the cell suitability

for being urbanized is not dependent upon probabilistic methods.

A second trend relates to the stochastic models with both deterministic

estimations of area for land-use transition and deterministic transition algorithms.

A good example of this category of models is the SIMLUCIA, conceived by White

et al. (1998), which is an integrated model of natural and human systems operating

at several spatial scales, and was aimed at providing the officials of the Caribbean

Island of Santa Lucia with a tool to explore possible environmental, social and

economic consequences of hypothesized climate change.

In this model, a sophisticated set of equations that take into account aspects of

the natural environment is formulated in order to estimate the impact of economic

and demographic changes on land use. The stochasticity of this model is present in

the calculation of the probabilities of land-use transition for each cell, which is

basically a function of the cell suitability for the new activity in question and its

relative accessibility for such an activity. In the SIMLUCIA transition algorithm,

cells are ranked by their highest potential and cell transitions begin with the highest-

ranked cell and proceed deterministically downwards, until the number of cells

demanded by the above-mentioned equations is reached.

A third trend concerns the stochastic CA models, with both stochastic estimations

of area for land-use transition and stochastic transition algorithms. The modelling

experiment presented in this paper integrates this third category, in which the

transition rules are randomized, the cell transition probabilities are calculated

through Bayesian probabilistic methods (‘weights of evidence’) and the Markov

chain is, in principle, utilized for the definition of the transition rates for each

possible type of land-use change. An overview of the ‘weights of evidence’ statistical

method, as well as an explanation of how it can be applied to the modelling of urban

land-use dynamics, is presented throughout the next section.

2. Methods: a Bayesian method-based cellular automaton model

2.1 Generalization procedures applied to the land-use maps

The city maps provided by the Bauru local authorities presented inconsistencies due

to the fact that illegal settlements are not shown on official maps, and not all of the

legally approved settlements drawn have, in fact, been implemented. In this way,

satellite imagery arises as a feasible solution for the identification of urban

settlements actually in existence, as well as for the delineation of the true urban

occupation boundaries of the case study town.

In these official maps, some urban zones refer to areas which are not yet occupied

and some other zones categories do not correspond to the prevailing use
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encountered within their limits, reflecting just the local officials intention for their

future use. In this sense, the following procedures were applied to the initial (1979)

and final (1988) land-use maps (figure 1) used in the simulation experiment so as to

render them workable by the computational model and coherent to the reality to

which they are related:

1. reclassification of the zones initially assigned by the Bauru local authorities

according to their dominant and effectively existent use, based on field

observations and satellite imagery;

2. reclassification of similar zones shown on official maps to only one category,

e.g. residential zones of different densities were all reclassified to residential

zones only; special use zones and social infrastructure equipment zones were

reclassified to institutional zones only, and so on;

3. adoption of eight land-use zone categories: residential, commercial,

industrial, services, institutional, mixed-use zone, leisure/recreation, and

non-urban zone;

4. exclusion of districts segregated from the main urban agglomeration, i.e.

those which are located above 10 km from the official urban boundary;

5. disregard of the traffic network and minor non-occupied areas in the

simulations.

For updating the land-use maps used in the simulation, a Multi-Spectral Scanner

(MSS) image of 22 June, 1979 (WRS 237/75) and a Thematic Mapper (TM)

image of 29 November, 1988 (WRS 221/75) were employed. Official topographic

charts with scale 1: 50 000 were used for the registration of the images, with a

total average error of 1.308 pixel. The geographical coordinates of the control

points were then used for the registration of the city maps in vector format using

SPRING GIS (from the Division for Image Processing of the Brazilian National

Institute for Space Research—DPI-INPE). Finally, the city maps were super-

imposed on linearly enhanced colour composites of the registrated images (MSS

457 and TM 147), allowing a visual cross-check of existent and non-existent

settlements. It is worth remarking that if modelling is concerned only with urban

Figure 1. Land use in Bauru, São Paulo State, in (a) 1979 and (b) 1988. Residential use is
light grey; institutional use is black; services use zones and corridors and industrial use are
dark grey; commercial use is mid grey; and the white colour refers to non-urban use.
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expansion, i.e. only the classes of urban and non-urban use are under

consideration, detailed land-use maps derived from aerial photos and field

checking are no longer necessary and a simple binary classification of remotely

sensed data suffices.

2.2 Exploratory analysis and selection of variables

As stated formerly, the maps of explaining variables relate to the technical

infrastructure and socio-economic aspects of Bauru. Initially, these maps were

scanned in the OCE scanner (model G6035S) and digitized in AutoCad release 2000.

They were then exported as files with extension DXF to SPRING. These same

procedures were also adopted for the production of the Bauru land-use maps

presented in figure 1. In SPRING, the maps of variables were then subjected to a

preliminary processing, including vector edition, polygons identification, elabora-

tion of distance maps and spatial statistical analysis maps, such as the Kernel points

density estimator, etc.

Since the ‘weights of evidence’ statistical method (to be employed in the

calculation of the cells’ transition probabilities) is based on the ‘Bayes theorem of

conditional probability’, the selection of variables for the modelling analysis ought

to take into account the checking of independence amongst pairs of variables chosen

to explain the same category of land-use change.

For this end, two methods were used: the Cramer’s Coefficient (V) and the Joint

Information Uncertainty (U). In both cases, it is necessary to obtain values from an

area cross-tabulation between pairs of maps of variables under analysis. Let the area

table between map A and map B be called matrix T, with elements Tij, where there

are i51, 2, ... , n classes of map B (rows of the table) and j51, 2, ... , m classes of map

A (columns of the table). The marginal totals of T are defined as Ti. for the sum of

the i-th row, T.j for the sum of the j-th column, and T.. for the grand total summed

over rows and columns. If the two maps are independent of one another, with no

correlation between them, then the expected area in each overlap category is given

by the product of the marginal totals, divided by the grand total. Thus, the expected

area T*ij for the i-th row and j-th column is:

T1ij~
Ti:Tj

T::
: ð1Þ

Then, the chi-square statistic is defined as:

x2~
Xn

i~1

Xm

j~1

Tij{T1ij

� �2

T1ij

, ð2Þ

the familiar (observed2expected)2/expected expression, which has a lower limit of 0

when the observed areas exactly equal the expected areas, and the two maps are

completely independent. The Cramer’s Coefficient (V) is then defined as:

V~

ffiffiffiffiffiffiffiffiffiffiffi
x2

T:M

r
, ð3Þ

where M is the minimum of (n21, m21).
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
t
s
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
]
 
A
t
:
 
1
7
:
5
9
 
7
 
A
u
g
u
s
t
 
2
0
0
8



The Joint Information Uncertainty (U) belongs to the class of entropy measures,

which are also based on the area cross-tabulation matrix T, but can also be used for

measuring associations. Suppose that the Tij values are transformed to area propor-

tions, p, by dividing each area element by the grand total T... Thus, pij5Tij/T.., and

the marginal proportions are defined as pi.5Ti./T.. and as p.j5T.j/T... Therefore

entropy measures, also known as information statistics, can be defined using the

area proportions as estimates of probabilities. Proportions are dimensionless, so

entropy measures have the advantage over chi-squared measures of being unaffected

by measurement units (Bonham-Carter 1994).

Assuming that an area proportions matrix for map A and map B has been

determined from T, then the entropy of A and B is defined as:

H(A)~{
Xm

j~1

pj{ ln pj ð4Þ

H(B)~{
Xn

i~1

pi{ ln pi , ð5Þ

where ln is the natural logarithm. The joint entropy of the combination, H(A,B), is

simply

H(A,B)~{
Xn

i~1

Xm

j~1

pij| ln pij : ð6Þ

Then the ‘Joint Information Uncertainty’ of A and B, U(A,B), can be used as a

measure of association and is defined as

U A,Bð Þ~2
H(A)zH(B){H(A,B)

H(A)zH(B)

� �
ð7Þ

which varies between 0 and 1. When the two maps are completely independent, then

H(A,B)5H(A)+H(B) and U(A,B) is 0, and when the two maps are completely

dependent, H(A)5H(B)5H(A,B)51, and U(A,B) is 1.

The criterion which is used to determine whether one variable is independent of

another is, to a large extent, arbitrary as there is no large body of case results

associated with the application of these methods. Where this particular variant of

logit modelling has been used in the geosciences, Bonham-Carter (1994) reports that

values less than 0.5 for Cramer’s Coefficient and the Joint Information Uncertainty

suggest less association rather than more. In all comparisons made here, these

associations are less than this threshold. Indeed, all values are less than 0.45 for V

and less than 0.35 for U.

The variables employed in the simulations and their notations are found in table 1

and the respective values for the measures of association (V and U) between pairs of

variables chosen to explain the same category of land-use change are found in

table 2. As none of the association measure values surpassed the thresholds, no

variables that were preliminarily selected for modelling have been discarded from

the analysis. In practice, the variables selection routine also includes empirical

procedures, based on the visualization of distinct variables superposed on the final

land-use map, so as to identify those more meaningful to explain the different types

of land-use change (figure 2).
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2.3 Estimation of global transition rates

For the specific case study town in question—Bauru—in the period 1979–1988, five

types of land-use change were detected (table 3). In order to calculate global land-

use transition rates for the period 1979–1988, the initial and final land-use maps

were converted to raster files with extension TIFF and resolution 1006100 (m), and

then exported to the IDRISI Geographical Information System. The adopted

resolution is about a city block size, which was deemed convenient for the purpose

of urban land-use analysis, for intra-city block variations in land use are disregarded.

In IDRISI, a cross-tabulation operation was made between both land-use maps (see

Table 1. Definition of the 12 independent land-use change evidences or variables.

Notation Physical or socio-economic land-use change evidence

water Area served by water supply.
mh_dens Medium-high density of occupation (25–40%).
soc_hous Existence of social housing.
com_kern Distances to different ranges of commercial activities concentration,

defined by the Kernel estimator.
dist_ind Distances to industrial zones.
dist_res Distances to residential zones.
per_res Distances to peripheral residential settlements, isolated from the urban

concentration.
dist_inst Distances to social infrastructure (institutional use), isolated from the

urban concentration.
exist_rds Distances to main existing roads.
serv_axes Distances to the services and industrial axes.
plan_rds Distances to planned roads.
per_rds Distances to peripheral roads, which pass through non-occupied areas.

Table 2. Associations between the independent evidences (variables).

Evidence A Evidence B Cramer’s Statistic VA,B Uncertainty UA,B

water serv_axes 0.3257 0.0767
mh_dens soc_hous 0.0460 0.0017

plan_rds 0.2617 0.0701
per_rds 0.0201 0.0003

soc_hous plan_rds 0.1174 0.0188
per_rds 0.0480 0.0047

com_kern dist_res 0.4129 0.3447
per_res 0.1142 0.0310
dist_inst 0.1218 0.0520
exist_rds 0.2685 0.1499
serv_axes 0.2029 0.1099
per_rds 0.0434 0.0064

dist_ind serv_axes 0.1466 0.0477
dist_res serv_axes 0.2142 0.1002
per_res dist_inst 0.1487 0.0559

exist_rds 0.0592 0.0078
per_rds 0.1733 0.0553

dist_inst exist_rds 0.0601 0.0108
per_rds 0.0765 0.0238

exist_rds per_rds 0.0239 0.0019
plan_rds per_rds 0.0247 0.0029

764 C. M. de Almeida et al.
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figure 1) so as to generate global transition percentages (table 4) for the five existing

types of land-use change.

For the estimation of global transition percentages in the case of simulations

where the final land-use map was unavailable or in the case of land-use change

forecasts through DINAMICA, the Markov chain ought to be employed. This

Figure 2. Spatial independence of factors determining the transition from residential to
mixed use (RES_MIX). The buffer bands are distance to planned roads (plan_rds), the darker
diffused spots are areas of medium–high density of occupation (mh_dens) and the greater
dark polygons correspond to social housing (soc_hous).

Table 4. The matrix of transition rates for Bauru, 1979–1988.

Land use NonU Res Comm Indust Inst Serv Mixed Leis/Rec

NonU 0.9171 0.0698 0 0.0095 0 0.0036 0 0
Res 0 0.9380 0 0 0 0.0597 0.0023 0
Comm 0 0 1 0 0 0 0 0
Indust 0 0 0 1 0 0 0 0
Inst 0 0 0 0 1 0 0 0
Serv 0 0 0 0 0 1 0 0
Mixed 0 0 0 0 0 0 1 0
Leis/Rec 0 0 0 0 0 0 0 1

Table 3. Existing land-use transitions.

Notation Land-use transition

NU_RES Non-urban to residential
NU_IND Non-urban to industrial
NU_SERV Non-urban to services
RES_SERV Residential to services
RES_MIX Residential to mixed use

Remote Sensing of Urban Areas 765
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chain is a mathematical model designed to describe a certain type of process that

moves in a sequence of steps through a set of states, whose formula is defined as:

p tz1ð Þ~Pp(t) , ð8Þ

where p(t) is a column vector, with n elements, that represents the system condition

in a certain time t (e.g. area percentages for each ni land-use category or state);

p(t+1) is the vector representing the occupation of n states in a given future time t +1;

and P is the transition probability matrix or the table for land-use transition rates.

An important constraint of the Markov model lies in the fact that, in principle, it

supposes that transition probabilities do not change over time (stationary process).

Moreover, given its stochastic nature, the Markov chain masks the causative

variables. It is not an explanatory model and is, thus, of no use in understanding the

causes and driving factors of land-use transition processes. On the other hand, the

Markov chain analysis has the great advantage of presenting a mathematical and

operational simplicity. Simple trend projection involves no more than matrix

multiplication and the only data requirement is for current land-use information

(JRC and ESA 1994).

2.4 Reckoning of the cells’ land-use transition probabilities

As previously said, the ‘weights of evidence’ statistical method, employed in the

calculation of the cells’ transition probabilities, is based on the ‘Bayes theorem of

conditional probability’. Basically, this theorem concerns the favourability of

detecting a certain event, which, in the current case, can be a given category of land-

use change (e.g. non-urban use to residential use), provided that an evidence (e.g.

water supply area), also called explaining variable, has already happened. The

evidences or explaining variables of the experiment presented in this paper, which

are summarized in table 1, mainly refer to the technical infrastructure and socio-

economic aspects of the case study town, Bauru.

The favourability to find the event (change from non-urban to residential use) R,

given the presence of the evidence (water supply) S, can be expressed by:

P R=Sf g~ P R\Sf g
P Sf g , ð9Þ

where P{R/S} is the conditional probability of the event R occurring, given the

presence of the explaining variable S. The equations of the Bayes theorem can be

expressed in an odds form. Odds are defined as a ratio of the probability that an

event will occur to the probability that it will not occur. The weights of evidence

method uses the natural logarithm of odds, known as log odds or logits. In this way,

through some algebraic manipulations, the following expression is obtained:

O R=Sf g~O Rf gP S=Rf g
P S=RRf g , ð10Þ

where O{R/S} is the conditional (posterior) odds of R given S, O{R} is the prior

odds of R and P S=Rf g
�

P S
�

R
� �

is known as the sufficiency ratio (LS). In weights

of evidence, the natural logarithm of both sides of equation (10) is taken, and logeLS

is the positive weight of evidence W+, which is calculated from the data. Then:

log it R=Sf g~ log it Rf gzWz : ð11Þ

766 C. M. de Almeida et al.
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Similarly, the logits expression for the conditional probability of R, given the

absence of the evidence S, will provide the negative weight of evidence W2:

log it R=Sf g~ log it Rf gzW{: ð12Þ

If the evidence is uncorrelated with the events, then LS51, and the posterior

probability equals the prior probability, and the probability of an event would be

unaffected by the presence or absence of a certain evidence. On the other hand, W+ is

positive, and W2 is negative, due to the positive correlation between the evidences

and the events. Conversely W+ would be negative and W2 positive for the case where

a very limited part of the event occurs on the evidence area than would be expected

due to chance. Thus, if the events are independent of whether the evidence is present

or not, then W+5W250. In the weights of evidence method, there is a specific way

for calculating probability ratios (odds) in the case of n maps of evidence or variables

(Vi). The general expression for combining i51, 2, … , n maps is either:

O R=V1,V2,V3,:::,Vnf g~O Rf gP
n

i~1
LSi , ð13Þ

for the likelihood ratios or:

log it R=V1,V2,V3,:::,Vnf g~ log it Rf gz
Xn

i~1

Wz , ð14Þ

for the weights. In the particular case of the DINAMICA simulation model,

adopted for the modelling experiment being considered, the cells’ transition

probabilities are calculated through a formula which converts logit into conditional

probability, as follows:

Px,y R=V1,:::,Vnf g~y
O Rf ge

Pn

i~1

Wz
x:y

1zO Rf ge
Pn

i~1

Wz
x:y

ð15Þ

where V refers to all possible variables (evidences) selected to explain the transition

R and y corresponds to a normalizing constant, required to ensure that the

conditional probability of all cells with coordinates x,y lies between 0 and 1.

The first step in the process of calculating the cells’ transition probabilities using

DINAMICA is to obtain a cross-tabulation map (figure 3) between the initial and

final land-use maps elaborated for the city of Bauru, respectively, for the years 1979

and 1988.

In IDRISI, the land-use cross-tabulation map of Bauru (1979–1988) was used to

generate land-use transition maps (seen on the right column of figure 4) for each of the

five possible types of land-use change presented in table 3. This was done through

reclassification tables (‘edit’ command), on which three basic rules were observed.

First, all raster values corresponding to classes of land-use permanence or transition

whose initial land use was different from the initial land-use category in the

considered type of land-use change were assigned value 0 (black colour). This

reclassification to value 0 is automatic for raster values not included in the ‘edit’ table.

Secondly, all raster values corresponding to classes of land-use transition whose initial

and final land-use categories were equal to the initial and final categories of the land-

use change at issue were assigned value 2 (dark grey). Thirdly, all other remaining

classes of land-use permanence or transition were assigned value 1 (light grey).
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Once all possible types of land-use transition maps were elaborated (nu_res;

nu_ind; nu_serv; res_serv; res_mix), they were then subjected to partial cross-

tabulations with the respectively selected evidences maps. The sets of evidences maps

selected to explain each of the five types of land-use transitions are found in table 5.

The evidences maps, pre-processed in the SPRING GIS, were converted to raster

files—in the same manner as the initial and final land-use maps—with extension

TIFF and resolution 1006100 (m) and then exported to IDRISI. The partial cross-

tabulations disregard the raster values 0 (black colour) in the land-use transition

maps and are accomplished through the ‘ermatt’ command of IDRISI.

The numerical values of cell proportions existing in the absence/presence of a

binary evidence (e.g. water supply) or in the different ranges of distances maps and

found to be overlying on either class 1 or 2 of the land-use transition maps are (for

each cross-tabulation operation) selectively transferred to EXCEL files specially

created for the calculation of the weights of evidence, as shown in equations (10) and

(11).

Using the values for the positive weights of evidence W+ concerning the several

evidences maps employed in the analysis of each category of land-use change

(table 6), the DINAMICA simulation model will then calculate the cells’ transition

probabilities according to equation (15) for the five types of land-use transition. By

means of the cells’ transition probabilities, DINAMICA will generate the respective

transition probability maps (seen on the left column of figure 4) for each of the five

types of land-use change existing in Bauru from 1979 to 1988. These maps are seen

in ERMAPPER, a GIS employed by DINAMICA for visualization purposes.

It is worth noticing how well these probability maps detect the transition areas

(dark grey) on the corresponding land-use transition maps, for all the light and

Figure 3. Land-use change 1979 to 1988.

Figure 4. Estimated transition probability surfaces and land use change, 1979–1988. In the
left column, the range of probabilities runs from high (mid grey) and medium (light grey) to
low (dark grey) and null (black). In the right column, changes in land use are in dark grey,
land-use permanences are in light grey, whereas areas disregarded for the considered type of
land-use transition are in black.
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mid-grey regions on the probability maps relate to the very areas owning the highest
transition probability rates.

2.5 Model calibration

For the calibration of the model, empirical procedures were adopted. They basically
concern the visual comparative analysis for each type of land-use change amongst

the general trends of preliminary simulation results, the hints provided by both the

Table 5. Selection of evidences (variables) determining land-use change.

Evidences NU_RES NU_IND NU_SERV RES_SERV RES_MIX

water N
mh_dens N
soc_hous N
com_kern N N
dist_ind N
dist_res N
per_res N
dist_inst N
exist_rds N
serv_axes N N N
plan_rds N
per_rds N N

Table 6. The weights of evidence.

Land-use
transitions Evidences

Positive weights of evidence W+
x,y

1 2 3 4 5 6 7

NU_RES com_kern* 3.749 2.106 1.864 0.491 20.323 0 na
per_res{ 1.968 1.615 1.392 0.892 20.626 20.469 na
dist_inst§ 0.003 0.600 1.254 0.727 20.359 20.089 na
exist_rds" 0.231 0.320 0.353 0.510 0.443 0.196 20.085
per_rdsI 2.377 2.269 2.068 1.984 1.444 0.857 20.127

NU_IND dist_ind{ 3.862 4.016 3.792 3.452 1.763 0 0
serv_axes" 2.722 2.799 2.676 2.625 2.525 1.727 23.832

NU_SERV com_kern* 3.412 4.469 2.912 0.878 0 0 na
dist_res{ 2.144 1.523 0.621 20.065 0 0 na
serv_axes" 3.508 3.321 2.917 1.869 0.450 0 0

RES_SERV water Presence 20.6611 Absence 0.2883
serv_axes" 2.780 1.948 1.461 0.888 20.297 21.412 23.284

RES_MIX mh_dens Presence 0.6452 Absence 20.0635
soc_hous Presence 2.4678 Absence 20.3214
plan_rds" 3.506 1.863 0 0 0 0 0
per_rdsI 1.775 1.652 1.848 0.903 0 0 0

Note: Distance bands in metres:
*1: 0–500; 2: 500–1000; 3: 1000–1500; 4: 1500–10 000; 5: 10 000–30 000; 6: .30 000
{1: 0–500; 2: 500–1000; 3: 1000–1500; 4: 1500–2000; 5: 2000–5000; 6: 5000–10 000; 7: .10 000
{1: 0–500; 2: 500–1000; 3: 1000–2000; 4: 2000–5000; 5: 5000–10 000; 6: .10 000
§1: 0–500; 2: 500–1000; 3: 1000–3000; 4: 3000–8000; 5: 8000–15 000; 6: .15 000
"1: 0–250; 2: 250–500; 3: 500–750; 4: 750–1000; 5: 1000–1250; 6: 1250–2000; 7: .2000
I1: 0–250; 2: 250–500; 3: 500–750; 4: 750–1000; 5: 1000–1500; 6: 1500–2500; 7: .2500
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transition probability map and the land-use transition map and the guideline

information contained in the simultaneous overlay of different explaining variables

maps upon the final land-use map in vector format.

The model calibration, on the other hand, is as well accomplished by the analysis

of scatter plots relating subcategories of evidences (distances ranges)—whenever

they are available—with their respective positive weights of evidence. In a general

manner, when the plots present a good fit of trend lines (which can assume different

orders and types), the evidences to which they are associated are highly likely to be

included in the model.

The final decision towards the inclusion or exclusion of a given evidence will

always rely upon a broad judgement, in which the environmental importance of the

evidence and its coherence concerning the phenomenon (land-use transition) being

modelled are analysed. As stated by Couclelis (1997), to take full advantage of CA

models as simulating (and forecasting) tools, planners and others need to rely as

much on their right-brain powers of pattern recognition and relationship perception

as on left-brain analyses of the inevitably inaccurate quantitative outputs.

3. Results and discussion

Upon the basis of the calibration process carried out, it becomes evident that the

probability of certain non-urban areas in the city of Bauru to shelter residential

settlements (‘nu_res’ land-use transition) depends largely on the previous existence

of this type of settlement in the surroundings, on the greater proximity of these areas

to commercial activities clusters as well as on the available accessibility to such

areas.

As to the transition of non-urban areas to industrial use (nu_ind), there are two

great driving forces: the nearness of such areas to the previously existing industrial

use and the availability of road access. This can be explained by the fact that in the

industrial production process, the output of certain industries represents the input of

other ones, which raises the need of rationalization and optimization of costs by the

clustering of plants interrelated in the same production chain. Furthermore, plots in

the vicinities of industrial areas are often prone to be devalued for other uses, which

makes them rather competitive for the industrial use.

Regarding the transition of non-urban areas to services use (nu_serv), three major

factors are crucial: the proximity of these areas to clusters of commercial activities;

their closeness to areas of residential use; and, last but not least, their strategic

location in relation to the N–S/E–W services axes of Bauru. The first factor accounts

for the suppliers’ market (and, in some cases, also consumers’ market) of services;

the second factor represents the consumers’ market proper; and the third factor

corresponds to the accessibility for both markets related to the services use.

Since the transition ‘residential to services use’ (res_serv) already takes place

relatively close to the suppliers and consumers markets, it will solely consider a

strategic location in relation to the N–S/E–W services axes of Bauru, as well as the

absence of water supply at the initial time of simulation (note in table 6 that W+ in

this particular case is negative). Localities close to the services axes but deprived of

water supply refer to the immediate fringe of consolidated urban areas, i.e. newly

developed areas, will be integrated fully into the urban network by the final time of

simulation.

Finally, the last type of land-use transition concerns the shift from residential use

to mixed use (res_mix). The mixed-use zones, which actually play the role of urban
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sub-centres, constitute a strengthening of minor commercial centres, which at a later

stage also start to attract services and social infrastructure equipment besides more

diversified commercial activities. Therefore, new mixed-use zones arise in more

peripheral areas, where a greater occupational gathering is ensured. Thus, the

decisive factors for this last type of land-use change are:

N the existence of medium–high density of occupation (higher density values only

occur in the central commercial zone of the town or in the immediacies of

already existing mixed-use zones);

N the presence or proximity of social housing settlements (for they shelter the

greatest occupational densities in more peripheral areas and, hence, greater

consumers’ markets);

N the nearness to planned or peripheral roads, since new mixed-use zones arise in

further areas of the town.

It is implied by the above analysis that the land-use transitions show compliance

with economic theories of urban growth and change, where there is a continuous

search for the optimal location, able to ensure competitive real estate prices, good

accessibility, rationalization of transportation costs, and a strategic location in

relation to markets.

After the calibration for the selection of evidences maps sets is accomplished, a

new calibration process concerning the script parameters of the DINAMICA

simulation model takes place. Such parameters refer to the number of iterations

(runs), proportion of cell transitions by contiguity (‘expander’ operator) and by

nucleation (‘patcher’ operator), average size and variance of patches to be generated

either by the expander or patcher operators, etc.

The expander is an algorithm of the DINAMICA model which realizes transitions

from a state i to a state j only in the adjacent vicinities of cells with state j. The

patcher operator, in turn, accomplishes transitions from a state i to a state j only in

the adjacent vicinities of cells with state other than j.

Due to the randomness of the DINAMICA transition algorithms, even though

the same sets of evidences maps for each type of land-use transition and the same

script parameters are kept in different runs, distinct simulation results will be

produced after each run of the model. In this way, the three best urban land-use

simulation results for the city of Bauru in the period 1979–1988 can be presented

(figure 5).

The transition ‘non-urban–residential use’ proved to be the most challenging for

simulation. Its boundaries are defined by highly unstable factors, such as the real

estate entrepreneurs’ decisions to develop certain areas rather than others, and the

plot boundaries themselves, which can have their forms drastically altered by

merging or splitting operations.

The services corridors (light mid-grey) were well modelled in all simulations. The

industrial use zone (mid-grey in the north-eastern part of town) was considerably

well detected in all of the three simulations results, especially in S2 and S3. The

leisure and recreation zones (very dark grey), the institutional zones (very light grey)

and the central commercial zone (dark mid-grey triangle in the town centre) did not

suffer any transitions. The new mixed zone that arose in the north-western part of

the town during the simulation period was rather well modelled, particularly in S1

and S3.
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To conclude, it is worth stressing here the wide feasibility (and the cells’ transition

probability maps are a concrete proof for this) to optimize the simulation results by

means of a model which embraces more refined algorithmic logics, such as the

incorporation of fractal parameters in the transition algorithms as well as the

possibility to define patch average sizes and variances for the expander and patcher

algorithms separately.

4. Statistical validation of the model

With the purpose of conducting statistical tests for the spatial validation of models

of land-use dynamics, Constanza (1989) presented a procedure entitled ‘Multiple

Resolution Method’, in which a sampling window, which can assume different sizes,

moves over the entire image considered, and the average fit between two given

scenes (the real and the simulated one) for a particular window size is calculated. In

this estimation, a comparative analysis is conducted between the absolute number of

pixels belonging to the same classes existing on both scenes and found within a given

window. This multiple resolution method was implemented in a UNIX environment

program named FIT, developed by CSR-UFMG. FIT was applied for the best

simulation results presented in figure 5, with sampling window sizes of 363, 565

and 10610, and the values for goodness-of-fit obtained were 0.902937, 0.896092

and 0.901134, respectively, for S1, S2 and S3.

5. Conclusions

The urban land-use dynamics models, driven by GIS and remote sensing data, have

proved to be useful for the identification of main urban growth vectors and their

general land-use tendencies, which enables local planning authorities to manage and

reorganize (if it comes into question) city growth according to the environmental

carrying capacity of concerned sites and to their present and envisaged

infrastructure availability.

The urban expansion forecasts provided by such models also help local

authorities in general to establish investment goals in terms of technical and social

infrastructure equipment. Decision-makers from the private sphere can also benefit

from the modelling output data, since transportation, conventional and mobile

phones, cable TV and internet companies, among others, will have subsidies for

defining priorities as to where and how intensely to invest. In addition, organized

civil society, either through NGOs or local associations, can profit from the

modelling forecasts in order to enhance, by legal means, demanding social

movements for the implementation of social and technical infrastructure. Their

requests and respective arguments will be based on realistic short- and medium-term

urban growth trends.

Finally, it is worth mentioning that the ‘weights of evidence’ statistical method is

not constrained by the straitjacket of rigid theory devices; neither does it impose

theoretical restraints on the modelling objects. Since this a wholly empirical

approach, its applicability can be extended to further cities—Brazilian and world-

wide—provided that the minimum necessary sets of evidences maps are available.
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