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Entropy measures were first introduced into geographical analysis during a period

when the concept of human systems in equilibrium was in its ascendancy. In partic-

ular, entropy maximizing, in direct analogy with equilibrium statistical mechanics,

provides a powerful framework in which to generate location and interaction models.

This was introduced and popularized by Wilson, and it led to many different exten-

sions that elaborate the framework rather than extend it to different kinds of models.

I review two such extensions here: how space can be introduced into the formulation

through defining a ‘‘spatial entropy’’ and how entropy can be decomposed and nested

to capture spatial variation at different scales. Two obvious directions to this research

remain implicit. First, the more substantive interpretations of the concept of entropy for

different shapes and sizes of geographical systems have hardly been developed. Sec-

ond, an explicit dynamics associated with generating probability distributions has not

been attempted until quite recently with respect to the search for how power laws

emerge as signatures of universality in complex systems. In short, the connections be-

tween entropy maximizing, substantive interpretations of entropy measures, and the

longer-term dynamics of how equilibrium distributions are reached and maintained

have not been well developed. This literature gap has many implications for future

research, and, in conclusion, I sketch the need for new and different entropy measures

that enable us to see how equilibrium spatial distributions can be generated as the

outcomes of dynamic processes that converge to a steady state.

Defining and interpreting entropy

An event occurring with probability p gives us a measure of information about the

likelihood of that probability being correct. Any event with a very low probability

that occurs gives us a great deal of information, whereas when an event with a high

probability occurs, this is less of a surprise and gives us correspondingly less in-

formation. Information thus varies inversely with probability, and we can define
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this as 1/p. However, if we have two independent events with probabilities p1 and

p2, if one occurs and then the other occurs, we would expect the information

gained to be 1/(p1p2) because the probability of their joint occurrence is p1p2. Yet

when an event occurs, it is reasonable to suppose that the information gained

should be additional to any information already gained, and, thus, one might

expect the information for both events to be the sum of each. Clearly, this is not

1=p1 þ 1=p2 6¼ 1=ðp1p2Þ but a function Fð�Þ, of which the only solution is the

qlogarithm of the inverse of the probability, that is,

F
1

p1p2

� �
¼F

1

p1

� �
þ F

1

p2

� �
� logðp1p2Þ ¼ � logðp1Þ � logðp2Þ

9>=
>; ð1Þ

In short, the information gained by the occurrence of any event is

logð1=pÞ ¼ � logðpÞ, which also can be thought of as a measure of the uncertainty

of the event occurring or as a measure of surprise (Tribus 1969).

For a series of n events, with probabilities pi; i ¼ 1; 2; . . . ; n, the average in-

formation is the expected value of this series, which can be written as

H ¼ �
Xn

i¼1

pi log pi ð2Þ

This measure was first defined in this form by Shannon (1948) when considering

the communication of information over a noisy channel. But the formula is central to

statistical physics, originating with Clausius in the early 19th century, and given

specific statistical interpretation by Boltzmann and then by Gibbs as the measure for

thermodynamic entropy. In particular, the method of entropy maximizing, which is a

major theme here, was first associated with finding the distribution of particles in a

physical context, giving rise to the Boltzmann–Gibbs distribution that serves as the

baseline for many of the distributions of spatial activity introduced here (Ben-Naim

2008). When Shannon (1948) introduced this measure, he sought advice as to what

to call it from John von Neumann, who had worked with a version of the measure in

quantum physics. Although apocryphal, von Neumann1 reportedly said, ‘‘You

should call it entropy, for two reasons. In the first place your uncertainty function

has been used in statistical mechanics under that name, so it already has a name. In

the second place, and more important, no one really knows what entropy really is, so

in a debate you will always have the advantage!’’

This function has many attractive properties for describing spatial distributions.

Here, we initially assume that the probability pi is proportional to some count or

density of spatial activity, such as population in a zone i that might be a census

tract. If all the population were located in a ‘‘mile-high building’’ such as the one

proposed for a town of 100,000 people in 1956 by Frank Lloyd Wright (Rybczynski

2010), then pi 5 1 and pk ¼ 0; 8k 6¼ i, and the entropy would be at a minimum,

with Hmin 5 0. If the population were evenly spread throughout the tracts as
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pi ¼ 1=n; 8i, then the entropy would be at a maximum, with Hmax ¼ log n. Many

distributions lie between these extremes, and the construction of a variety of related

measures that make comparisons with the maximum is possible. For example, a

measure of information difference can be constructed as

I ¼Hmax �H ¼ log n þ
X

i

pi log pi

¼
X

i

pi log
pi

1=n

� �
¼
X

i

pi log
pi

qi

� � ð3Þ

The term on the right-hand side (RHS) of the second line of equation (3) is an

information difference of the kind widely used in likelihood theory, first popular-

ized by Kullback (1959). Snickars and Weibull (1977) and Webber (1979) dis-

cussed it in a geographical context where fqig can be interpreted as a prior and

fpig as a posterior probability distribution. The normalization of I as R ¼ I=Hmax is

called relative redundancy, which is a measure varying between 0 and 1.

The entropy measure in equation (2) increases with the number of events or

objects making up a distribution. This is intuitively acceptable because as we have

more events, we have more information, unless the additional events have zero

probability of occurrence. This feature is easy to show because Hmax ¼ log n; but it

also constitutes a problem for spatial analysis because it means that we cannot

compare systems with unequal numbers of objects, or, in our case, different num-

bers of spatial subdivisions or zones. We have to normalize the quantity in some

way, such as in equation (3), and the development of spatial entropy that I present

subsequently is one strategy for doing this. This lack of comparability means that

methods for deriving spatial probability distributions have been much more at the

fore in geographical analysis than more substantive interpretations of the entropy

measure. This focus is unfortunate because some important conclusions need to be

drawn about the structure of different spatial systems with respect to measures of

entropy. This is an unfinished quest.

If we consider a hypothetical system in which all the population is piled into

one zone—the mile-high building example—then such a system is completely or-

dered; it has minimum entropy, there is no uncertainty about its structure, and it has

no variety. To make this kind of system possible, we would need enormous con-

straints on its manufacture to the point where everything would have to be con-

trolled. In contrast, systems in which the population is spread out evenly have

maximum entropy and maximum disorder and constitute the situation that would

emerge when the system has no constraints on the system and all persons can live

where they want. Given enough time, people would spread out evenly in the ab-

sence of any reason for locating in any particular place. What is significant about

this interpretation is its direct connections to thermodynamic entropy, where max-

imum disorder occurs when all particles mix freely, which occurs when temper-

ature in a system rises and any differences are ironed out. This order–disorder

continuum with respect to H is directly invoked if we consider that as we put more
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and more constraints on the form of a distribution we successively reduce the en-

tropy. In this sense, a direct link exists between the probability distributions that we

observe and the model and the methods of deriving such distributions using the

method of entropy maximization, to which we now turn. I first present the method,

which relates directly to that pioneered by Wilson (1970) for urban and regional

systems, although after this presentation, I describe many new insights that seek to

show how such methods can be extended to deal with space, scale, and scaling.

The entropy-maximizing framework

The best strategy to choose a probability distribution consistent with information we

know the distribution must meet is to maximize its entropy subject to a series of

constraints that encode the relevant information. When entropy is maximized, the

distribution is the most conservative and hence the most ‘‘uninformative’’ we can

choose. Were we to choose a distribution with lower entropy, we would be assuming

information that we did not have, while a distribution with higher entropy would

violate the known constraints. Thus, this maximization is equivalent to choosing a

distribution that is the most likely or probable within the constraints, because it is

easy to show, as Wilson (1970 and in this issue) does, that the maximum entropy is

an approximation to the probability of a particular macrostate occurring among all

possible arrangements (or microstates) of the events in question.

Unlike Wilson (1970 and in this issue), I demonstrate the maximization for a

probability distribution of the location i of population pi in n zones, rather than the

probability pij of interactions between zones i and j, although all my derivations are

immediately generalizable to these more detailed specifications. We must first

specify the constraints, which we take to be functions of the probabilities that de-

fine totals, averages, or more generically ‘‘moments’’ of a distribution. To demon-

strate this derivation, I choose two constraints for the location of population. First, a

normalization constraint ensures the probabilities sum to unity:X
i

pi ¼ 1 ð4Þ

Second, I choose a constraint for the average cost, �C , of locating in any zone,

which is the sum of the individual locational costs ci weighted by their probabilities

of occurrence: X
i

pici ¼ �C ð5Þ

Next I form a Lagrangian L that consists of the entropy H reduced by the in-

formation encoded into the constraints in equations (4) and (5), and then find its

maximum with respect to the probability pi. In other words,

L ¼ �
X

i

pi log pi � ðl0 � 1Þ
X

i

pi � 1

 !
� l1

X
i

pici � �C

 !
ð6Þ
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where the parameters l0 � 1and l1 are Lagrangian multipliers that ensure the max-

imization meets these constraints. Differentiating equation (6) with respect to each

probability pi and setting the result equal to zero yields

@L

@pi
¼ � log pi � l0 � l1ci ¼ 0 ð7Þ

Rearrangement and exponentiation of equation (7) gives the probability model

pi ¼ expð�l0 � l1ciÞ ð8Þ

Note that the multiplier specified as (l0 � 1) enables us to get rid of the free-

floating negative number –1 resulting from the differentiation in equations (6) and

(7), thus clarifying the ensuing algebra.

The model in equation (8) has some intriguing and appealing properties. The

values of the parameters l0 and l1 can be determined by solving the model ac-

cording to the constraint equations (4) and (5). If we substitute equation (8) into (4),

then expð�l0Þ becomes a partition function defined from

expðl0Þ ¼
X

i

expð�l1ciÞ; or

l0 ¼ log
X

i

expð�l1ciÞ
" #

9>>>=
>>>;

ð9Þ

The exponential model in equation (8) can then be more clearly written as

pi ¼
expð�l1ciÞP
i

expð�l1ciÞ
;
X

i

pi ¼ 1 ð10Þ

and from this we see that if the Lagrangian multiplier for the average cost of location

is redundant—that is, l1 ¼ 0—then the exponential model collapses to a uniform

distribution where pi ¼ 1=n:The last step of the derivation is to substitute the model

into the entropy equation H; the entropy for this model is at its maximum when

Hmax ¼ �
X

i

pi log expð�lo � l1ciÞ½ � ¼ l0 þ l1
�C ð11Þ

This maximum is a function of each multiplier and its constraint, with the

implication that entropy is a function of the spread of the distribution, which is

determined by the cost constraint. In this sense, entropy can be seen as a system-

wide accessibility function in that the partition and cost relate to the spread of

probabilities across the system.

The exact form of the relationship in equation (11) requires a little more insight

into the form of its exponential function. To this end, we need to anticipate the next

section in moving from a discrete to a continuous form of model. For the expo-

nential function, the summations in equations (4)–(6) and (9)–(11) can be general-

ized to continuous form by assuming that pi ¼ pðxiÞDxi and ci ¼ cðxiÞ, where pðxiÞ
is an approximation of the size of the population x at the point location i to the
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probability density over the interval or area defined by Dxi, and cðxiÞ is an equiv-

alent approximation to the cost density in zone i. We can assume that, as Dxi ! 0,

pðxiÞ ! pðxÞ and cðxiÞ ! cðxÞ. Thus, we can write and simplify constraint equa-

tion (4) as X
i

limDxi!0

pðxiÞDxi ¼
Z 1

0

pðxÞdx ¼
Z 1

0

expð�loÞ exp½�l1cðxÞ� dx

¼ expð�loÞ
l1

¼ 1 ð12Þ

which further simplifies to

expð�l0Þ ¼ l1 and l0 ¼ � log l1 ð13Þ

Now the constraint on travel cost in continuous form can be written asX
i

limDxi!0

pðxiÞcðxiÞDxi ¼
Z 1

0

pðxÞcðxÞdx

¼
Z 1

0

l1 exp½�l1cðxÞ�cðxÞdx ¼ 1

l1
¼ �C

ð14Þ

From the derivations in equations (13) and (14), the exponential model can be

stated in a much simpler form, equivalent to the Boltzmann–Gibbs distribution in

statistical mechanics. Noting now that expð�l0Þ ¼ l1 ¼ 1=�C , the model can be

written in its classic form as a density:

pðxÞ ¼ 1
�C

exp � cðxÞ
�C

� �
ð15Þ

where in thermodynamics cðxÞ is the energy at location x and �C is related to the

average temperature T because �C ¼ kT , where k is Boltzmann’s constant. Note

that, as I am using Shannon’s rather than Boltzmann’s entropy, the expression for

average cost is dimensionless when k 5 1, but this does not make any significant

difference to the interpretation (Ben-Naim 2008).

The maximum entropy in continuous form is not the limit of equation (2) with

respect to Dxi as I show here. Before I do this demonstration, let me state this en-

tropy as

S ¼ �
Z 1

0

pðxÞ log pðxÞdx ð16Þ

Then, substituting equation (15) into (16), the continuous entropy at its

maximum has the same form as equation (11), which simplifies to

S ¼ �
Z 1

0

pðxÞ log pðxÞdx ¼ l0 þ l1
�C

¼ �
Z 1

0

pðxÞ log
1
�C

exp
cðxÞ

�C

� �� �
dx ¼ log �C þ 1 ¼ � log l1 þ 1

ð17Þ
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Therefore, the appropriate measurements of entropy S (and H) vary with the log

of the average cost or temperature, and the parameters l0 and l1 can be approx-

imated from this average cost. In the sense that average cost in the system might be

interpreted as a kind of accessibility, entropy itself can be seen as such a measure.

Batty (1983), Erlander and Stewart (1990), and Roy and Thill (2004) explore related

insights.

Our last foray into the derivation of this model—which I regard as a baseline for

geographical systems that must meet some conservation constraint such as average

cost—involves sketching how such exponential distributions can emerge from a sim-

ple dynamics that involves changes to the costs of location between different places i.

Let us assume that a system starts with each place i having the average cost of location

as �C , that is, ci ¼ �C ; 8i. Also assume that each place has some sort of collective

consciousness or ‘‘agent’’ that is willing to increase or decrease the cost of location if

instructed to do so. I design a simulation where, at each time, two places i and j are

chosen at random and a small fixed fraction of the cost of location, Dc, is transferred

such that the total (and average) cost of location remains the same. Each time, ciðt þ
1Þ ¼ ciðtÞ þ Dc and cjðt þ 1Þ ¼ cjðtÞ � Dc such that Sckðt þ 1Þ ¼ SckðtÞ. Let us also

assume that a location cannot receive a negative cost, that a lower bound exists for

ciðtÞ � 0; 8i; t, where this boundary condition is absolutely essential for the gener-

ation of the stable state that ultimately emerges. If this process continues for many time

steps, a distribution of costs (in locations) emerges that follows the Boltzmann–Gibbs

distribution in equations (10) or (15) that appears when the costs are binned and the

relative probability distribution examined.

In short, through a process of random swapping akin to energy collisions in a

thermodynamic system, the system self-organizes to the exponential distribution

from any starting point, which in our case is the uniform distribution. This process is

robust in that many variations of the swapping mechanism involving randomness

lead to the universal form of a negative exponential that is due to the boundary

condition and the conservation of costs. Strictly speaking, this process is best con-

sidered as one where each location is an individual engaging in the process with

the resulting probability distribution formed by collecting each of these individuals

into ‘‘locations.’’ Drãgulescu and Yakovenko (2000) show many variants of the

model that lead to the same ultimate form with respect to a simple economic sys-

tem where individuals engage in swaps involving a conserved quantity such as

money. They also generalize the model by relaxing the boundary constraints and

embed it in a wider context where wealth that is not conserved is considered,

making the point that these variants also admit the generation of other distributions

such as the log normal and the power law. This kind of model has not been ex-

plored in geographical analysis hitherto for there has been no consideration of the

dynamics that lead to entropy maximizing. The dynamics that have been explored

is one in which the entropy-maximizing solution is embedded in a wider nonlinear

dynamics (Wilson in this issue). This discussion introduces the possibility of disag-

gregating the entropy-maximizing model to the point where individuals or agents
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are the basic objects constituting a system, thus opening the framework to much

more general types and styles of simulation such as agent-based modeling.

Spatial entropy: the continuous formulation

So far, apart from my brief digression in the preceding section into continuous en-

tropy, I make no formal distinction between density and distribution. I assume im-

plicitly that distribution and density covary, which would be the case where each

interval Dxi ¼ Dx; 8i, that is, each interval is the same size as, for example, in a

spatial system arranged on a regular grid. Many spatial models ignore the size of the

interval completely, and operational models that build on entropy maximizing

rarely factor internal size into their simulations, which inevitably leads to biased

applications. Yet I can easily show how interval size must enter an analysis ex-

plicitly. As before, I first define each element of the probability distribution pi that is

the product of an approximation to the density p(xi) of population size x at location i

and the interval size Dxi;

pi ¼ pðxiÞDxi ð18Þ

from which density is defined as

pðxiÞ ¼
pi

Dxi
ð19Þ

Using equation (18) in the entropy H, equation (2) can be rewritten as

H ¼ �
X

i

pðxiÞDxi log½pðxiÞDxi �

¼ �
X

i

pðxiÞ log½pðxiÞ�Dxi �
X

i

pðxiÞ½logDxi�Dxi

ð20Þ

When we pass to the limit, limDxi ! 0, equation (20) can be written as

limfDxi ! 0gH ¼ �
Z 1

0

pðxÞ log pðxÞdx �
Z 1

0

pðxÞ log dx ð21Þ

where the first term on the RHS of equation (21) is the continuous Shannon entropy

defined as S in equation (17). Equation (21) implies that H !1, as limDxi ! 0,

which is another way of saying what I have already said in the previous section,

namely, if Dxi ¼ X=n; 8i, then H � log n, and this goes to infinity in an equivalent

way.

The key to augmenting the entropy-maximizing method is to use a discrete

approximation to the continuous entropy S. Using equation (19) in the approxima-

tion to S, which is the first term on the RHS of the second line of equation (20), gives

HS ¼ �
X

i

pi log
pi

Dxi

� �
ð22Þ

which I define as spatial entropy (Batty 1974; Goldman 1968). Using equation

(22) instead of equation (2) in the entropy-maximizing scheme, which involves
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minimizing the Lagrangian in equation (6) with pi=Dxi for pi in equation (7),

leads to the augmented Boltzmann–Gibbs exponential model, the equivalent of

equation (10):

pi ¼
Dxi expð�lciÞP

i

Dxi expð�lciÞ
ð23Þ

Equation (23) can be interpreted as a model in which the interval size has been

introduced as a weight on the probability and is consistent with the continuous

version of the Boltzmann–Gibbs model when passing to the limit Dxi ! 0.

However, another interpretation exists for this augmented model. If we write

the entropy HS in the expanded form of equation (22) as

HS ¼ �
X

i

pi logpi þ
X

i

pi logDxi

¼ H þ
X

i

pi logDxi

ð24Þ

then we can consider the second term on the RHS of equation (24)—the expected

value of the logarithm of the interval sizes—as a constraint on the discrete entropy

H. This is a very specific constraint in equation (24) in that it is simply a direct

augmentation to the discrete entropy. Instead, we set this as a freely varying con-

straint on the discrete entropy in the formX
i

pi logDxi ¼ log �X ð25Þ

and introduce this into the Lagrangian in equation (6), which we now write as

L ¼�
X

i

pi log pi � ðl0 � 1Þ
X

i

pi � 1

 !
� l1

X
i

pici � �C

 !

� l2

X
pi logDxi � log �X

� � ð26Þ

The model that we derive from this minimization can be written as

pi ¼ expð�l0 � l1ci � l2 logDxiÞ ð27Þ

which in a more familiar form can be written as

pi ¼
ðDxiÞ�l2 expð�lciÞP

i

ðDxiÞ�l2 expð�lciÞ
ð28Þ

Thus, the interval or zone size enters the model as a scaling factor, a kind of

benefit rather than cost, in the same way such factors are introduced by Wilson

(1970) in his family of spatial interaction models. By comparing equations (23) and

(28), if the multiplier l2 is forced to be unity, then the constraint on interval size

enters the model in exactly the same way it would if it were incorporated into the
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entropy in the first place, that is, as a maximization of spatial rather than discrete

entropy. Note also that, in entropy-maximized equations like (28), the sign of the

multipliers is undetermined until they are fitted to meet the constraint equations.

One further point about this augmented maximization is that if constraint equations

in the Lagrangian or augmentations to the entropy are of logarithmic form the rel-

evant variables enter a model as power laws: they are scaling, and any continuous

version of the derivation has to be modified to ensure that these constraints lie

within defined limits. I return to this point subsequently when dealing more for-

mally with scaling.

The standard example that Wilson (1970) uses to demonstrate the logic of en-

tropy maximization is for trip distribution or spatial interaction where the entropy is

based on the probability pij that a person makes a trip Tij from an origin zone i such

as a workplace to a destination zone j such as a residence. An example of the

unconstrained model that is subject to an equivalent cost and normalization con-

straint is derived by maximizing

H ¼ �
X

i

X
j

pij log pij ð29Þ

subject to the following constraints:X
i

X
j

pij ¼ 1 and
X

i

X
j

pijcij ¼ �C ð30Þ

where cij is the cost of interaction between zones i and j, and the model is de-

rived as

pij ¼
expð�l1cijÞP

i

P
j

expð�l1cijÞ
ð31Þ

The density equivalent is based on normalizing the probability with respect to

the size of the zones at each origin and destination Dxi and Dxj, respectively. Fol-

lowing through the same logic used to derive equation (23) for the one-dimensional

case and using the appropriate spatial entropy with respect to pij=ðDxiDxjÞ, we

generate the equivalent interaction model as

pij ¼
DxiDxj expð�l1cijÞP

i

P
j

DxiDxj expð�l1cijÞ
ð32Þ

Note that all the same conclusions about the measure of entropy and the way the

model can be simplified, as developed for the location model, follow for the inter-

action model in equation (32). If DxiDxj ¼ DxDx, the model collapses to

the distributional form in equation (31), while if l1 ¼ 0, the model collapses to the

uniform distribution, weighted according to the interval size for the distributional

form. The way in which attractors or benefits can be introduced either as augmented
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measures to the entropy or as constraints also follows, and in this sense; equations

(23) and (32) are generic forms.

Before moving on to questions of scale and aggregation, I reiterate my earlier

definition of information differences with respect to entropy. Statistical information

is defined as the difference between two distributions fpig and fqig, where fqig
often is referred to as the prior and fpig, the posterior. Kullback (1959) and, in a

geographical context, Snickars and Weibull (1977) and Webber (1979), among

others, define information I as

I ¼
X

pi log
pi

qi

� �
;
X

i

pi ¼
X

i

qi ¼ 1 ð33Þ

I varies between zero and infinity, zero being the measure when pi ¼ qi; 8i,
that is, no difference exists between prior and posterior distributions; in short, no

information is gained by moving from the prior to the posterior. If we assume that

the prior probability distribution is proportional to the interval size—that is,

qi ¼
DxiP

i

Dxi
¼ Dxi

X
ð34Þ

where X is the area of the entire system—then the information in equation (33)

becomes

I ¼
X

pi log
pi

Dxi=X

� �
¼ log X þ

X
pi log

pi

Dxi

� �
¼ log X �HS

ð35Þ

When Dxi ¼ Dx; 8i, equation (35) collapses to equation (3), which is repeated

here as

I ¼ Hmax �H ¼ log n þ
X

i

pi log pi ð36Þ

Many such manipulations of entropy and information exist that all give oblique

insights into the measure and the shape of the relevant distributions, some of which

recur in the subsequent discussion.

To conclude this section, one noteworthy concern is how we might proceed to

develop substantive interpretations of the various entropy measures as derived so

far in this article, which does not broach any empirical applications. Nevertheless,

although these measures have rarely been used other than for derivation of model

structures using entropy maximizing, obvious and straightforward applications exist

in which their actual values lead to interesting and informative insights into the

structure of spatial systems. The thermodynamic relations in which entropy is the

difference between free-energy and fixed-energy use, where free energy also can be

thought of as the difference between fixed energy and entropy, can generate many

substantive interpretations of the extent to which spatial structures are constrained
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by known energy use. In terms of models that are derived using entropy maximiza-

tion, their parameters and constraints can be interpreted as a function of their energies

(Morphet 2010). Although entropy can be interpreted as a measure of spread or dis-

persion in a spatial system that ties it quite strongly to its thermodynamic interpre-

tation, its real value is in illustrating differences between spatial systems, particularly

where the energy constraint in a given system changes over time. These energy and

entropy differences are what are important, because they are tied quite strongly to

measures of difference between accessibility and utility, and to consumer surplus in

transport evaluation (Batty 2010). It is not possible to develop these ideas further here,

but suffice it to say an entirely new research agenda can be formulated with respect to

the substantive meaning of entropy and related energy measures that tie these quan-

tities back to their more fundamental thermodynamic origins.

Consequently, far from being of mainly historical interest in spatial analysis,

entropy maximizing still has enormous potential for generating new insights into

the structure and functioning of spatial systems, which I illustrate by deriving mod-

els that pertain to scaling that are also central to new developments in complexity

theory (Batty 2009).

Scale and entropy: aggregation and constraints

Shannon’s entropy in equation (2) has an exceptionally easy-to-manipulate log-

linear structure and additive form that allows it to be aggregated with respect to

groups of objects that might pertain to some higher level of organization in the

system of interest. Theil (1972) refers to this process of aggregation as the entropy-

decomposition theorem and, to illustrate it, I first divide the set Z of n objects, in this

case the spatial zones of the geographical system, into K sets, Zk ; k ¼ 1; 2; :::; K ,

each with nk objects such that Snk ¼ n. The sets are mutually exclusive and col-

lectively exhaustive in that

Z ¼ [
K

k¼1
Zk andf ¼ \

K

k¼1
Zk ð37Þ

where f is the empty set. Note now that each probability pi 2 Zk is defined so that

Pk ¼
X
i2Zk

pi and
X

k

Pk ¼
X

k

X
i2Zk

pi ¼ 1 ð38Þ

Substituting these definitions into equations (37) and (38), we can write the

discrete entropy in equation (2) as

H ¼ �
X

i

Pk log Pk �
X

k

Pk

X
i2Zk

pi

Pk
log

pi

Pk

¼ HB þ
X

k

PkHk

ð39Þ

where HB is the between-set entropy at the higher system level, and the second

term on the RHS of the second line of equation (39) is the sum of the within-set
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entropies Hk weighted by their probability of occurrence Pk at the higher level. As

the sets Zk get fewer and progressively larger from the original set Z—which is

tantamount to disaggregation of the entire set into smaller and smaller sets—the

within-set entropies decrease in sum and the between-set entropy HE rises in

value until all that remains is one aggregated set for each object, that is, HB ! H.

Moving the other way, when all the objects are aggregated into one set, then

HB ! 0, and SPkHk ! H. Proofs of these assertions are given in Theil (1972) and

Webber (1979).

The equivalent decomposition formula for spatial entropy as we have defined it

in equation (22) can be stated. Then, noting that

Xk ¼
X
i2Zk

Dxi ð40Þ

where Xk is the sum of the intervals (areas) in each aggregated set Zk, spatial entropy

can be decomposed as

HS ¼ �
X

k

Pk log
Pk

Xk

� �
�
X

k

Pk

X
i2Zk

pi

Pk
log

pi

Pk

�
Dxi

Xk

� �

¼ HSB þ
X

k

PkHSk

ð41Þ

where HSB is the between-set spatial entropy, and SPkHSk is the sum of the

weighted within-set spatial entropies. An information difference structure is

buried in equation (41), as spelled out earlier for spatial entropy between

equations (33) and (36), and similar interpretations apply. In developing decom-

positions of entropy and spatial entropy in this fashion, the focus is on explaining

the variation in entropy at different spatial scales, noting that entropies can be

nested into a hierarchy of levels, that is, the between-set entropies can be further

subdivided into sets that are smaller than Zk but larger than the basic sets for

each object or zone Zi. These ideas have been used to redistrict zones to ensure

equal populations in the case of the discrete entropy and equal population densities

in the case of spatial entropy in an effort to design spatial systems that meet some

criteria of optimality that pertain to scale and size (see Batty 1974, 1976). In this

article, I do not deal with the effect of shape on entropy, but extensions exist to deal

with idealized spatial systems that also incorporate constraints on shape, such as

the regularity of boundaries, although developments in this area have been limited

(Batty 1974).

These decomposed entropy measures can be used in entropy maximiza-

tion to enable models to be derived that are constrained in different ways at

different system levels. Let us assume that the cost constraint on probabilities

pertains to the entire system, as in equation (5), but that entropy needs to be

maximized so that the aggregate probabilities sum to those that are fixed by the

level of decomposition or aggregation chosen, as in equation (38). I set up

the Lagrangian to maximize equation (39) with respect to equations (38) and (5)
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as follows:

L ¼�
X

k

Pk log Pk �
X

k

Pk

X
i2Zk

pi

Pk
log

pi

Pk
�
X

k

ðlk
0 � 1Þ

X
i2Zk

pi � Pk

 !

� l1

X
pici � �C

� � ð42Þ

and then minimize the expression

@L

@pi
¼ � log pi � lk

0 � l1ci ¼ 0; i 2 Zk ð43Þ

to derive the model that we can state as

pi ¼ expð�lk
0 � l1ciÞ; i 2 Zk ð44Þ

We can compute the partition function directly by substituting for pi in equa-

tion (38), yielding

expð�lk
0Þ ¼

PkP
i2Zk

expð�l1ciÞ
or

lk
0 ¼ log

P
i2Zk

expð�l1ciÞ

Pk

9>>>>>=
>>>>>;

ð45Þ

from which the relevant exponential model in equation (44) can be more clearly

written as

pi ¼ Pk
expð�l1ciÞP

i2Zk

expð�l1ciÞ
; i 2 Zk and

X
i2Zk

pi ¼ Pk ð46Þ

Note that the constraint equation on cost is for the entire system and, as such,

effectively couples the various models for each subset in terms of their calibration

but not in terms of their operation.

We need to be careful about the way these models are coupled because if no

system-wide constraints exist, then the models are separable; the entropy maxi-

mizing is separable into K subproblems. For example, assume that the cost con-

straint in equation (5) is replaced with cost constraints that pertain to the subsets

written as X
i2Zk

pi

Pk
ci ¼ �Ck ; 8k ð47Þ

Then, from equation (47), that the system-wide constraint is also met asX
k

Pk

X
i2Zk

pi

Pk
ci ¼

X
k

Pk
�Ck ¼

X
k

X
i2Zk

pici ¼ �C ; 8k ð48Þ
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If we substitute equation (48) in (42), noting that now we have K multipliers lk
1,

then the derived model has the same structure as equation (44) but now can be

written, following equation (46), as

pi ¼ Pk
expð�lk

1ciÞP
i2Zk

expð�lk
1ciÞ

; i 2 Zk ð49Þ

This model is not only separable for each subset Zk, but each model also is

calibrated separately with respect to the cost constraint and determination of the set

of multipliers flk
1g. Using spatial entropy maximizing adds little to this logic other

than ensuring that the interval or area for each zone appears in the exponential

equation. If we follow the same process, the equivalent model to that in equation

(49) can be written as

pi ¼ Pk
Dxi expð�lk

1ciÞP
i2Zk

Dxi expð�lk
1ciÞ

; i 2 Zk ð50Þ

where if the system-wide cost constraint in equation (5) applies, then the only differ-

ence is that there is one multiplier, l1, not K. To provide some sense of closure to this

argument, readers are referred to Theil (1972), who provides many applications of

these kinds of decomposition to the measurement of variance and difference at differ-

ent levels of disaggregation for both spatial and nonspatial systems, connecting these

ideas to a much wider literature about the measurement of inequality.

Generating spatial probability distributions

So far I have defined both entropy and its method of maximization with respect to

probabilities that pertain to spatial locations. In terms of the typical problem, there

is the assumption that the probability of location is some function—a negative ex-

ponential in the classic Boltzmann–Gibbs case—of some size variable such as cost.

Implicitly, in this case, the probability of location might be proportional to the ob-

served population in any zone, and a sensible assumption is that a higher proba-

bility of location measured by a higher population is associated with a lower cost

(or higher benefit) of locating in the place in question. However, another interpre-

tation exists that is less specific about the kinds of probability distributions that

emerge from entropy maximizing and depends on how one sets up a problem. In

this section and in the rest of this article, we can assume that some measure of size,

not cost, is what a probability distribution must conserve, and that probabilities

vary with respect to this size variable. In short, rather than thinking of the spatial

location problem as one in which the probability of population location is related

to some size or cost, we now develop a model in which the probability of location

is dependent on the actual population size that is observed in the locations

in question. This is the obvious way to develop entropy maximizing for city–size

distributions, a topic that has remained quite confused since Berry (1964) and Curry
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(1964) first speculated about these questions over 40 years ago. This is also the

route by which we can connect the arguments of this article to size distributions in

general and to power laws in particular.

To extend entropy maximizing in this way, I replace the probability pi of each

event with its frequency f ð�Þ. I define a function of the size of the event Vi, which in

many of these cases literally is the population size, although it could be defined as

any related measure. Then I derive the appropriate discrete probability frequency

for f(Vi) by maximizing its entropy H defined in analogy to equation (2) as

H ¼ �
X

i

f ðViÞ log f ðViÞ ð51Þ

This expression is subject to the usual normalization and constraints associated

with the moments of the distribution that are defined asX
i

f ðViÞ ¼ 1;
X

i

f ðViÞVi ¼ �V ;
X

i

f ðViÞ V 2
i � �V

	 

¼ s2; and so on ð52Þ

where s2is the variance of the distribution. This discussion and notation follows

Tribus (1969), although several other presentations of this process have more formal

roots in probability theory. A good contemporary start for these more formal pre-

sentations between entropy, scale, and scaling can be found in the books by So-

rnette (2006) and Saichev, Malevergne, and Sornette (2010).

The Boltzmann–Gibbs negative exponential model is still the baseline in en-

tropy maximization because it introduces a constraint on the distribution that is the

first moment, the average, and no others apart from the normalization of the prob-

abilities. Following the same logic used earlier in equations (4)–(10) and assuming

the intervals over which the discrete frequency is measured are equal, that is, Dxi ¼
Dx; 8i (to avoid any confusion with spatial entropy at this stage), we maximize

equation (51) subject to the first two constraints shown in (52). Using the relevant

Lagrangian with appropriate multipliers yields

log f ðViÞ ¼ �l0 � l1Vi ð53Þ

This has the classic log-linear form that generates the Boltzmann–Gibbs prob-

ability frequency

f ðViÞ ¼ expð�l0 � l1ViÞ ð54Þ

which gives the familiar exponential form

f ðViÞ ¼
expð�l1ViÞP
i

expð�l1ViÞ
ð55Þ

Equation (55) implies that the larger the size, the lower the probability, which is

the same as the previous interpretation with size equivalent to locational cost. This

relationship is made more graphic if we rearrange equation (53), where size is now
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a function of frequency, as

Vi ¼ �
l0

l1
� 1

l1
log f ðViÞ ð56Þ

However, if the size Vi is population as measured in terms of the number of in-

dividuals living in zone i, then we cannot equate cost with size in any way because

larger populations are much more likely to live in places where the costs of location are

lower, all other things being equal. This feature is the confusion that has never really

been resolved in generating size distributions with entropy-maximizing techniques. The

motivation for the earlier models, such as those developed by Wilson (1970), was al-

ways to maximize entropy with respect to a cost constraint, whereas for the models in

this section, the motivation is to maximize entropy with respect to a size constraint. In

this context, a perfectly reasonable assumption is that an individual locating across a

space has many more places to locate where populations are small than places where

populations are large. It is in this sense that frequency in this section differs from prob-

ability in the previous sections, although formally the algebraic expressions are identical.

Now we can show how the negative exponential can become a power function

if the constraint on average size is replaced by its geometric equivalent, that is,X
i

f ðViÞ log Vi ¼ log �V ð57Þ

where log �V is the expected value of the sum of the logarithms of the sizes. The logic

is that agglomeration economies of size or diseconomies of cost or energy are per-

ceived logarithmically rather than absolutely, as enshrined in the Weber–Fechner law

(Stevens 1957). We assume this perception is defined for a discrete system because

difficulties noted below arise when we examine the rank–size rule and its consistency

with entropy maximization. The continuous version of the model must be invoked for

purposes of simplification and demonstration. However, if we maximize entropy

subject to equation (57) and the normalization constraint, the model becomes

log f ðViÞ ¼ �l0 � l1 log Vi ð58Þ

which in exponential form is

f ðViÞ ¼ expð�l0ÞV�l1
i ð59Þ

Equation (59) is a power function that, in more familiar terms, can be written as

f ðViÞ ¼
V�l1

iP
i

V�l1
i

ð60Þ

where, from equation (60), we can write the model in inverse form in analogy to

equation (56) as

Vi ¼ exp � l0

l1

� �
f ðViÞ

� 1
l1 ð61Þ
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In this context, Vi also varies inversely with the power of frequency. From

equation (61), which, in turn, is derived from the assumption about logarithmic

costs made in equation (57), we can generate the more familiar rank–size rule that

has been known for well over a century, first exploited for income sizes by Pareto

(1906) and then for city sizes by Zipf (1949). I explore these functions in the next

section.

In maximizing entropy with respect to the three constraints stated in equations

(52), one notes that the third constraint also can be simplified to

X
i

f ðViÞðVi � �V Þ2 ¼
X

i

f ðViÞV 2
i � �V ¼ s2 ð62Þ

yielding

log f ðViÞ ¼ �l0 � l1 Vi � l2V 2
i ð63Þ

In the first exponential form, this is

f ðViÞ ¼ expð�l0 � l1Vi � l1V 2
i Þ ð64Þ

which in more familiar terms is

f ðViÞ ¼
expð�l1Vi � l1V 2

i ÞP
i

expð�l1V �i l1V 2
i Þ

ð65Þ

As Tribus (1969) shows, equation (65) is a form of the normal distribution. The

entropy-maximizing derivation is interesting because it makes explicit the polyno-

mial form of the normal with the contribution of the mean and the variance directly

associated with the multipliers l1 and l2. The parameter l1 is negative, making this

exponential positive, and l2 is positive, meaning the variance term acts as a neg-

ative exponential. The normality of the distribution is always preserved no matter

what the value of these multipliers. Moreover, if l1 � l2, the variance of the dis-

tribution becomes increasingly smaller, while the skewness become increasingly

peaked. We can complete this set of distributions by assuming that the size distri-

bution is log-normal, that is, instead of Vi, we now define size as its logarithm,

log Vi. We can formally restate the constraint equations for the log-normal as

X
i

f ðViÞ ¼ 1

X
i

f ðViÞ log Vi ¼ log �V

X
i

f ðViÞ ðlog ViÞ2 � log �V Þ
h i

¼ s2

9>>>>>>=
>>>>>>;

ð66Þ
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Maximizing equation (51) subject to equations (66) gives the model in final

form as

f ðViÞ ¼
expð�l1 log Vi � l1ðlog ViÞ2ÞP

i

expð�l1 log Vi � l1 log ðViÞ2Þ

¼ V�l1
i ðV 2

i Þ
�l2P

i

V�l1
i ðV 2

i Þ
�l2

ð67Þ

Equation (67) implies that, if l1 � l2, the log-normal form collapses to

the inverse power law form but only for a range of the largest values of Vi. This

is one of the simplest demonstrations that power laws tend to dominate in the

upper or heavy tail of the log-normal distribution. Again, the same caveats apply as

for the existence of the moments for the discrete case, which will always be true for

the sorts of spatial systems to which these models apply, that is, where

1 � Vi < 1. Tribus (1969) has a relatively straightforward demonstration of the

properties of the normal distribution with respect to the values of the parameters

that can be determined from an approximation to the continuous probability

density function.

Approximating scaling: the rank–size rule and Zipf’s law

The negative exponential and power law models generated in the previous

section using entropy maximizing represent discrete density functions relating

frequency to size. These distributions already define the form of the population

or city–size distributions (where spatial locations i define the locations of distinct

cities). However, a more popular form, particularly for city sizes, firm sizes,

incomes, and related social phenomena involves ranking these sizes from the

largest value of Vi, which I now call rank r1, to the smallest, rn. The rank is the

countercumulative of the frequency (Adamic 2002). If we accumulate the frequen-

cies from, let us say, some value of i ¼ m < n to the largest value of i 5 n, then this

accumulation would define the rank rn�m. We can only express this formally if we

consider the continuous approximation to f(Vi) as f(V), which is defined when

Dxi ! 0. Let us first take the exponential model defined in equation (55) in its

continuous limit as f ðV Þ � expð�l1V Þ. The integration defining the countercumu-

lative F(V) is

FðV Þ ¼
Z 1

v

f ðV ÞdV �
Z 1

v

expð�l1V ÞdV ¼ 1

l1
expð�l1V Þ½ �1v ð68Þ

where FðV Þ � rn�m ¼ rk , i 5 m, and k 5 n� i. Thus,

rk � expð�l1VkÞ ð69Þ
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from which

log rk � �l1Vk

Vk �
1

l1
log

1

rk

� �
9>=
>; ð70Þ

Equations (70) define rank as a function of population and population as a

function of rank, which exposes the clear log-linear structure of the exponential

rank–size relationship.

The classic rank–size relationship commonly is developed with the relationship

between size and frequency expressed as a power law. The continuous limit based

on equation (60) can be written as f ðV Þ � V�l1 , from which we define the count-

ercumulative F(V) as

FðV Þ ¼
Z 1

v

f ðV ÞdV �
Z 1

v

V�l1dV ¼ 1

l1 þ 1
V�l1þ1Þ
	 
1

v
ð71Þ

where F(V) is the rank rk as defined for the integration of the exponential following

equation (68). This rank can be written as

rk � V�l1þ1
k ð72Þ

from which

log rk � ð1� l1Þ log Vk

Vk � r
� 1

1�l1
k

)
ð73Þ

Equations (73) define rank as a function of population, and population as a

function of rank. Equations (72)–(73) imply that these power laws are scaling, that

is, if we scale size by a as aVk, then the rank does not change, which can be dem-

onstrated by substituting aVk for Vk in any of the preceding equations. A power law

is the only function that has this property; hence, its claim as a signature of uni-

versality.

Using the logarithmic mean of the size as the major constraint in generating

distributions in the inverse power or Zipf–Pareto form is consistent with assuming

that size (or cost) can be viewed as a regular distortion based on human perception.

We noted this feature previously as the Weber–Fechner law, which pertains to how

we perceive brightness and sound. Even the way our cognitive senses respond to

size is proportional to the logarithm, not to the actual value, of the relevant measure

of intensity (see Stevens 1957). In spatial interaction modeling, Wilson (1970) made

use of this property to show how the original gravitational hypothesis is consistent

with models produced by entropy maximizing, particularly in the context of very

long distance flows, such as those measured as commodities in trade systems,

where the perception of travel cost is more likely to be logarithmic than absolute.

The same arguments are used to incorporate additional constraints that might be
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thought of as benefits rather than costs, reflecting the fact that agglomeration econ-

omies are sometimes perceived logarithmically.

We also can generate rank–size distributions for the normal and log-normal

models that we derived in equations (65) and (67), respectively. Although pursuing

this development is not very illuminating, the log-normal is a noteworthy special

case largely because many arguments exist suggesting that city, firm, and income

size distributions are not consistent with power laws, but rather are log-normal,

with the power law only applying as an approximation to these distributions in their

upper tail. Writing equation (67), noting the signs of the multipliers as determined

by Tribus (1969), expressing the first multiplier as a and the second as b, and then

passing to the limit renders f ðV Þ � V aV�2b, from which we form the countercu-

mulative as

FðV Þ ¼
Z 1

v

f ðV ÞdV �
Z 1

v

V aV�2bdV ¼ 1

a� 2bþ 1
V a�2bþ1Þ
	 
1

v
ð74Þ

Equation (74) indicates that the shape of the log-normal is completely depen-

dent on the value of the parameters a and b. Nevertheless, we can speculate on the

shape of the function for various ranges of size from these values and the size {Vi}.

The rank and size relationships, analogous to equation (73), can be written as

log rk � ðaþ 1Þ log Vk � 2b log Vk

Vk � r
1

ðaþ1�2bÞ
k

)
ð75Þ

If a11 � 2b, then for the largest values of Vk the second term in the first line of

equation (75) dominates, implying that the rank–size relation is more like a power

law in its upper or heavy tail.

The preceding development is a somewhat informal way of demonstrating the

relationship between inverse power and log-normal functions, and readers are re-

ferred to more considered sources that elaborate this relationship. Perline (2005)

formalizes an excellent discussion about when one is able to approximate the

heavy tail of a log-normal with a power law that builds on earlier expositions that

are part of the literature on skewed probability functions, as summarized by Mon-

troll and Schlesinger (1982). The purpose here is not to develop a treatise about the

log-normal or, indeed, about the Zipf and Pareto power laws, for we see that both

can be derived from entropy maximizing. Rather, power laws can emerge from two

sources: (1) directly if the constraint on the entropy is a geometric mean and (2)

when the constraints on the entropy are those that define the log-normal but for

very large values of the size distribution where the variance of the distribution is

also very large, effectively meaning that the heavy tail occurs over several orders of

magnitude. For empirical applications to city–size distributions, readers are referred

to the mainstream literature where these issues are discussed in great detail. The

recent article by Eeckhout (2004) is representative.
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One last substantive issue requires us to complete this presentation about how

scaling distributions are associated with entropy maximizing. The traditional ex-

planation of how power laws come to dominate spatial and social distributions

essentially is based on a generic model that leads to agglomeration economies, in

which any object chosen at random increasingly is unlikely to grow to a very large

scale, realizing agglomeration economies that are associated with large cities, peo-

ple with large incomes, the domination of large firms, and so on. In essence, the

growth or decline in size of any object making up such competitive systems is

based on Gibrat’s (1931) law of proportionate effect, in which any object of size Vit

grows or declines to Vit11 by a random amount eit, whose value is proportionate to

the size of the object already reached, that is, Vitþ1 ¼ ð1þ eitÞVit . This process, if

operated continually for many time periods, leads to a distribution of objects that is

log-normal. If the process is constrained so that objects do not decline in size below

a certain threshold (which is tantamount to not letting size become negative), sev-

eral authors show that the resultant distribution is no longer log-normal but rather is

scaling in the form of an inverse power function. These conclusions have emerged

from several sources in physics (Levy and Solomon 1996), in economics (Saichev,

Malevergne, and Sornette 2010), in earth sciences (Sornette 2006), and in several

other areas of social inquiry (Newman 2005).

This dynamic, referred to by Solomon (2000) as the ‘‘generalized Lotka–

Volterra (GLV) model,’’ essentially illustrates that in the steady state, power laws

emerge from processes in which there is random proportionate growth against a

background of transitions between individuals or places in terms of the interest

variable, be it population, income, wealth, cost, or some other size measure. The

steady-state results generated by such models also are consistent with Boltzmann

distributions, as Richmond and Solomon (2001) show, while Foley (1994) and then

Milakovic (2003) demonstrate that entropy maximizing can be employed directly

with the dynamics being embedded as constraint equations that the process of

wealth creation must meet. An enormous literature now exists that deals with sto-

chastic GLV types of models, which build on proportionate effect, leading to log-

normal and power laws. Several oblique interpretations of the steady states asso-

ciated with such processes as Boltzmann–Gibbs distributions exist, which Rich-

mond and Solomon (2001) say are ‘‘. . . Boltzmann laws in disguise.’’ The earlier

dynamic models developed by Drãgulescu and Yakovenko (2000) also are being

extended to deal with systems where the constraints on distributions of money,

wealth, and income all vary with consequent differences in their distributions, in

turn, providing a rich source of interpretations for the way inequalities emerge in

economic systems (Yakovenko and Rosser 2009).

Little of this discussion has yet to find its way into spatial or geographical sys-

tems because the concern with city–size distributions has been remarkably aspatial,

in contrast to entropy maximizing in geographical analysis; but signs of a conver-

gence are beginning to appear. Wilson’s (2008) recent work, for example, seeks

to generalize entropy maximizing in a dynamical framework that he refers to as
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Boltzmann–Lotka–Volterra models, which have clear links to GLV models. At pres-

ent, approaches to dynamics can be seen as either constructing a Lotka–Volterra

dynamic that leads to Boltzmann–Gibbs and related distributions, or to Boltzmann–

Gibbs distributions that are nested within a Lotka–Volterra dynamic. Much

synthesis needs to be done, and many fruitful insights can be gained by these

extensions. After a period of reflection and consolidation, a rebirth of interest

in measures of entropy and entropy maximizing in geographical analysis is now

entirely possible through developments in modern systems theory that now fall

under the guise of the complexity sciences (Batty 2009).

Future research: alternative entropies, more explicit dynamics

In this article, I argued that one of the issues that has never been systematically

tackled with respect to the application of entropy measures and methods in geo-

graphical analysis involves a thorough interpretation of what the various measures

actually mean in terms of spatial distributions with respect to their size, scale, and

shape. The Shannon entropy measure in equation (2) is only one of many such

measures, albeit perhaps the most natural in that it satisfies the multiplicity re-

quirement for independent events in terms of the additivity of information as de-

fined in equation (1). But if events are not independent and if the entropy phase

space is structured in ways that do not allow probabilistic events to occur in all

parts of the space, then the Shannon measure is not necessarily the most appro-

priate. In geographical systems, events can be highly autocorrelated in space as

well as time, and thus the methods used to generate probability distributions in

equilibrium or in the steady state can be badly compromised if more appropriate

measures are not chosen.

Among these, the measure proposed by Rényi (1961) introduces a parameter a
that gives greater weight to larger probabilities if the parameter is 41, lesser weight

if o1, and is the same as the Shannon entropy for a5 1. It has many similar prop-

erties to the Shannon measure in terms of its maximum and minimum but could be

more useful for spatial systems where larger probabilities imply greater importance.

Few, if any, applications in this field exist (but see March and Batty 1975), and thus

this measure is worth exploring further. A more radical form of measure broaches

directly the question of the independence of events and breaks with the assump-

tions in equation (1) defining a measure of joint information for any addition of

information due to a sequence of probability events. This is called Tsallis entropy,

which Tsallis (2004) argues represents an entropy where events are nonextensive;

that is, events that apply to a more structured phase space than that assumed for the

original Shannon measure. The attraction of the Tsallis measure (which formally is

not unlike the Rényi entropy) is that in its use in maximization, the resulting model

is an inverse power law, not the negative exponential. All of these measures can be

decomposed for different scales, continuous equivalents can be approximated, and

they can be reconciled with methods and models that generate their form as either
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equilibrium distributions or as the outcome of stochastic proportional growth pro-

cesses. An agenda for testing their applicability to geographical systems would not

be hard to fashion.

Wilson’s (1970) contribution, however, is that he introduced a framework for

generating consistent models, rather than a set of methods, for enabling measure-

ment of actual entropies. Actual measures do fall out along the way, but the real

power of the entropy-maximizing framework that he introduced is in the generation

of specific and applied models and the demonstration that entire families of models

could be pictured across a spectrum of possible types. In this sense, his methods

provide a lasting framework for the derivation of operational models that continue

to be useful, indeed essential, in consistently specifying and coupling different

models together. The development of entropy maximizing in generating economic

models came much later and has yet to adopt the systematic procedures demon-

strated for spatial systems by Wilson (in this issue). Yet, despite its power, entropy

maximizing is compromised somewhat because space itself should be directly in-

corporated into the framework so that dimensional consistency can be ensured

through the use of spatial entropy rather than its discrete equivalent, the Shannon

measure. The existing practice of defining operational location and interaction

models has not really followed these procedures; nor has it systemically examined

the sets of constraints necessary to define particular problems with respect to what

is known and not known about the systems of interest. Much remains to be done in

using entropy maximizing to establish formalized methods for aiding the spatial

model-building process.

Last, but not least, dynamics has slowly entered the picture. The great attraction

of the framework when it was first proposed 40 years ago was its ability to generate

models in equilibrium. Dynamics was assumed to be benign, even to the point

where simple models (such as those used to move money around in an economic

system), developed only a decade or so ago by researchers such as Drãgulescu and

Yakovenko (2000), have never been explored in spatial analysis. Seeing geograph-

ical systems in equilibrium was enough. When Wilson (2008), among others, fol-

lowing the tradition established by Harris and Wilson (1978), began to explore how

such models could be made dynamic, they decoupled the dynamics from the stat-

ics, assuming that Boltzmann–Gibbs models represented a shorter, faster equilib-

rium that could be nested in the longer-term dynamics associated with the models

originally proposed by Lotka and Volterra. As argued in the preceding section, now

a new momentum is emerging. These different but related approaches are gener-

ating a new synergy about how geographical systems develop, consistent with

emergence and far-from-equilibrium structures, as well as new concepts about how

to model such systems from the bottom up. During the last 20 years, entropy in

geographical systems has no longer been at the cutting edge. Now, however, there

is every sign that these ideas will be resurrected as part of the burgeoning interest in

complexity science, which is forcing upon us the notion that equilibrium is a con-

venient fiction that we must move beyond.
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Note

1 As quoted in Scientific American 225(3) (1971), 180.
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