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Abstract. In this paper we analyse the street network of London both in its primary and dual
representation. To understand its properties, we consider three idealised models based on a grid, a static
random planar graph and a growing random planar graph. Comparing the models and the street network,
we find that the streets of London form a self-organising system whose growth is characterised by a strict
interaction between the metrical and informational space. In particular, a principle of least effort appears
to create a balance between the physical and the mental effort required to navigate the city.

PACS. 89.75.-k Complex systems – 89.75.Da Systems obeying scaling laws – 89.65.Lm Urban planning
and construction

1 Introduction

Urban growth has been widely analysed in the last century
using ideas from social physics and urban economics [1].
In fact cities, as natural phenomena, provide an iconic
paradigm for the science of complexity, both with re-
spect to their allometric scaling laws that relates them
to the celebrated Zipf’s law for population ranks [2] and
for the complexity of their transport patterns that have
been analysed both in the context of fractal geometry [3]
and network theory [4–6].

Graph theory provides a natural environment to
study urban growth as far back as 1736 , Euler applied
graph theory to solve an urban problem, the well known
Königsberg bridges problem [7], thus relating a metrical
problem to a topological one.

A graph G is a very simple object, i.e. an ensemble
of V vertices representing objects and E edges represent-
ing the relations between the objects, G = {V, E}. With
this level of abstraction, graphs have been applied in ge-
ographical studies in different ways, for instance to study
the patterns of urban commuting [8], the spread of infec-
tious diseases [9] and networks of the retail system [10].

If we assume that the vertices of a graph are the street
intersections in a city and the extremes of dead end roads
(or cul-de-sacs) and the edges the street fragments con-
necting the intersections, we obtain a so-called street net-
work. In particular we call this representation a primary
representation of the street network following the termi-
nology in [11]. Such a street network is a strange network
when compared to other social or biological networks [12]
in the sense that it is embedded in the Euclidian space
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and the edges do not cross each other. In graph theory,
such a network is called a planar graph [13].

The study of planar graphs has not received much at-
tention in physics for two main reasons. The first is that
the planarity criteria is not easy to overcome using the
calculus. Therefore a lack of analytical results has discour-
aged analysts in dealing with such graphs. The second is
that planar graphs can appear trivial in both their topo-
logical and geometrical properties. Regarding the first is-
sue, we believe that since planar graphs represent a class of
important phenomena, simulations can be used to quan-
tify the basic properties of such graphs. Regarding the
second issue, we note that the current research in the field
is limited to static planar graphs. In this paper, we in-
troduce a new class of models of growing planar graphs
that show more articulated properties than their static
counterparts.

Moreover in the study of street networks, there is con-
siderable interest in the so-called dual representation, that
is the representation in which the streets are vertices and
two vertices are connected whenever the streets they rep-
resent intersect1. This representation describes the infor-
mation content of the street network [14], in the sense
that it represents the way a person navigates the city. To
understand this concept, we need to refer to our personal
experience when we move from one place to another in the
city. In such a case, we do not think of all the street seg-

1 It is worth to notice that in graph theory the dual represen-
tation of a planar graph has a different meaning. In particular
for a planar graph G, the dual graph F is the graph in which
the faces of G are the vertices and two vertices are connected
whenever the faces they represent share the same boundary
in G. Nevertheless in this paper we follow the definitions in-
troduced in physics reviews.
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ments we cross to go from one point to another, but only
the roads we move on, that are the vertices of the dual rep-
resentation. Hence to cross a large city (like London), we
only need a small amount of information such as the street
names (the vertices of the dual representation) which we
need to cross the city.

Those concepts will be explained in detail in Section 3.
For now it is important to mention that it has been ob-
served that the distribution of the number of connections
(the degree distribution) of the vertices of the dual repre-
sentation of street networks is often scale-free [14]. This
observation relates the phenomenology of urban growth
to a wide range of scale-free phenomena through network
theory representation and allows us to think of the growth
of a city using an informational approach.

In this paper, we analyse the street network of London
in its primary (see Sect. 2) and dual representation (see
Sect. 4). To contextualise the results, we first introduce a
grid model to simulate a maximal ordered city and then
two stochastic models, one static and one a growth model,
to simulate a maximal random city. Those models are not
intended to reproduce the behaviour of the real planar
graph, but they are set as a frame where the real net-
work properties can be deciphered. In the primary repre-
sentation, we construct measures in the topological and
metrical space, in the cycle space, and in the information
space. In the dual representation, we generate measures
in the topological and information space.

The importance of this research resides in the quality
of the analysed data (see Appendix A for details), then in
the detailed analysis of static planar graphs, and lastly in
the introduction and analysis of growing random planar
graphs.

Within the different results we obtained, we want to
underline two of them that in our opinion are the focus
of this script. The first one regards the degree distribu-
tion of the different graphs both in the primary and dual
representation. In fact, since a street network is a growing
system, its statistical properties have to be compared with
the ones of a growing system as well. Then it is possible
to see that the degree distribution of the street network
of London is highly non trivial both in its primary (see
Fig. 7) and in its dual representation (see Fig. 14). The
second result we want to highlight is that notably we find
that the structure of London streets tends to be a compro-
mise between a growing random city and a grid-like city, in
the sense that it is self-organised in a way that minimises
both the physical effort (see measures in Fig. 10) and the
informational effort (see measures in Fig. 16) required in
navigating the city.

1.1 The street network of London

London began in 43AD as a Roman settlement and
has had comparatively uninterrupted urban growth every
since making it the largest metropolis in Western Europe.
To establish the borders of a city is still a controversial
topic [15] and hence, to build our network, we consider all
the streets contained in a circle of radius 28.26 km, centred

Fig. 1. Left panel: the London street network considered in
this research. Right panel: a localised view of the same network.

Fig. 2. Measure of the length distribution P (l) for the street
network of London and for the GRPG (growing random planar
graph).

on the centroid of the borough called the City of London,
where the first Roman settlement was located. This area
contains some 95 percent of the population of the 33 bor-
oughs that comprise the Greater London Authority which
is also bounded by the M25 orbital road. In this way, we
obtain a network with V = 163 878 intersections, the ver-
tices, and E = 199 931 street segments, the edges (see the
left panel of Fig. 1). The London street network (here-
after LN) is a weighted network where the weights wij of
the edges connecting vertex i to vertex j are defined by
the length l of the street fragment they represent. A key
measure for such a network is the degree ki of a vertex
i defined as the number of vertices vertex i is connected
to. The average degree for LN is 〈k〉 = 2E

V � 2.44, a very
small value, close to that of a tree, it is due to the massive
presence of dead end roads as we can see from the right
panel of Figure 1.

An important measure that we will use in the next sec-
tion is the density distribution of the length l of the street
segments, i.e. the weight distribution of LN, measured in
meters. We show it in Figure 2 and we find that it is well
fitted by the function:

f(l) ∝ exp
[
−145

l
− l

2000

]
l−3.36, (1)
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Fig. 3. Left panel: a localised view of a realisation of the
ERPG. Right panel: a localised view of a realisation of the
Grid Model with degree 〈k〉 = 2.44.

where the average length for an edge is 95.73mt. The prop-
erties of equation (1) are scale-free for a long range of
distance, and the long distance cut-off ensures that the
variance of the distribution is finite.

1.2 The Erdös-Rényi random planar graph

We first introduce a random model for a static planar
graph. This is the only kind of random planar graph con-
sidered in literature as far as we know and we follow con-
vention in calling it the Erdös-Rényi planar graph (here-
after ERPG) in [16].

To build an ERPG we start with a Poisson distribution
of N points in a plane and we choose a distance r. To
build the first segment, we randomly pick up two points
of the distribution that have a distance less then r and
we connect them. Then we continue to randomly pick up
pairs of points P and Q in the given points distribution
that have a distance less then r. If the segment PQ does
not intersect any other line of the graph, we add it to the
graph. The process ends when we add the desired number
of edges E or when we arrive to the maximum allowed
number of edges E ≤ 13

7 V − o(V ) [17].
Here we generate a realisation of the ERPG model

with the same characteristics as the LN, that is the same
number of vertices and edges, and a distribution of points
in a disc with the same radius as the LN. To obtain the
same average length for the links, we choose r = 300mt. A
localised view of this realisation is shown in the left panel
of Figure 3, where we should note that this graph is not
necessarily fully connected. In particular, the realisation
we took as a study sample is made of 2072 disconnected
components, the largest one composed of 146 965 vertices.

1.3 The growing random planar graph

The ERPG is a static model for a planar graph. Since cities
are often growing systems that assume their shape over
the centuries, we introduce a novel class of random planar
graphs which we call growing random planar graphs (here-
after GRPG). We will show how the growth of this graph
implies different emerging properties from the ERPG.

Fig. 4. Left panel: the realisation of the GRPG considered
here, where the white dot is the origin of the growth of the
model. Right panel: a localised view of the same network.

To build a GRPG we start with a segment of length λ
embedded in the Euclidean plane. At each time step, we
randomly pick up one of the vertices of the graph. We
draw from it a new segment of length l according to an
isotropic distance distribution f(l, Θ) = f(l), where f is
a probability density function. If the new segment does
not intersect any of the existing segments, then we add
it to our graph. This process creates a tree planar graph
with average degree 〈k〉 = 2E

N = 2(V −1)
V . To obtain a pla-

nar graph that is not a tree and that has average degree
〈k〉 > 2, every n time steps we randomly pick a vertex i
from the existing graph. Next we consider the set of ver-
tices in the graph that are within a radius l0 from vertex i,
where l0 is randomly extracted from the distribution f(l),
and forms a segment with vertex i that does not inter-
sect any other segment of the graph. Then we randomly
pick up a vertex j from this set of vertices and we add
the line ij to the graph. The process continues until we
reach the desired number of edges or vertices. The aver-
age degree of the vertices is then completely determined
by n, 〈k〉 = 2 + 2/n and thus the GRPG properties are
completely determined by the choice of n and f(l).

Here we analyse a realisation of a GRPG with the same
number of vertices and edges as the LN, f(l) given by
equation (1) (see Fig. 2) and n = 5. We show this realisa-
tion in Figure 4, where the white dot shows where the first
segment was located. We also notice how the power law
distribution for the length of the edges allows long range
connections, thus creating independent centres outside of
the main cluster city which leads to an overall asymmet-
ric form. Changing the distribution f(l) it is possible to
obtain different shapes of cities. Moreover in the GRPG
there are no unconnected components as in the ERPG.

1.4 The grid

The last model we introduce is that of a regular grid (GM
hereafter) to which we randomly add dead end roads to
obtain the same average degree of the LN. We introduce
this graph to simulate a maximally ordered city.

We start with a square grid of n horizontal lines and
n vertical lines. As in the previous networks, the vertices
are defined by the intersections of the lines and the edges
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of length l by the lines connecting two intersections. In
this way, we create n2 vertices with degree 4. To create
the same average degree of the LN, for m time-steps, we
add a new line in the following way. We randomly pick up
an edge from the network and from its midpoint we draw
a new line of length l/2− σ, perpendicular to the selected
edge, where σ = o(l). This process creates 2 new lines and
two new vertices of degreeF 1 and 3 at each time-step.
The resulting network has

V = n2 + 2m (2)

vertices and it is easy to show that the average degree of
the network is given by the following relation:

〈k〉 = 4
(n2 + m)
n2 + 2m

. (3)

Hence to find the correct values of n and m in building
our grid model, it is sufficient to solve the system of equa-
tions (2) and (3) with the values of V and 〈k〉 taken by the
LN, and we find n2 = 36 053.2 and m = 63 912.4. Consid-
ering that we need integer numbers, we run a simulation
with n = 190 and m = 63 912 and this gives us the same
average degree as LN. In the right panel of Figure 3 we
show a localised realisation of such a graph.

2 Comparison between the London street
network and the different models in their
primary representation

In this section we compare the properties of the LN, the
ERPG, the GRPG and the GM introduced in the last
section. This section is divided in three subsections where
we study the topological and geometrical properties, the
measures in the cycle space, and the centrality measures
which are all analysed separately. Many of the measures
regarding the ERPG and the GM are trivial and are not
considered.

2.1 Topological and geometrical properties

In a planar graph, topological and geometrical properties
are very much interrelated. We begin by considering a
geometrical feature, the spatial density of intersections ρ.
The density of the intersections, or vertices, is an emergent
property of the complex organisation of a growing planar
graph. In the case of the ERPG it is Poisson, while in the
case of the GM it is a uniform distribution.

In the left panel of Figure 5, we show the measure of
the radial density ρ(r) of the intersections in LN compared
to the one measured in the GRPG. In the case of LN, we
see that ρ(r) has a density plateau up to a radius of ap-
proximately 3.5 km, then the density drops fast until a ra-
dius of around 7 km from the centre is reached. After that,
the behaviour changes abruptly and ρ(r) decays linearly
toward the periphery. In the case of the GRPG, we can

Fig. 5. Left panel: the radial density ρ(r) of intersections for
LN and the GRPG. The tail of the measure for London is well
fitted by a linear function (Adj. R2 = 0.99029). Right panel:
measures of the average edge length l(r) versus the distance
from the centre for LN and for the GRPG.

see that the growth of the graph produces a density dis-
tribution that is a smooth bell shaped decaying function
of the distance. The plateau that is in LN is missing and
the function decays rapidly to a radius around of 15 km
producing a random city that has a maximum radius that
is a half of the radius of London. We can conclude that the
radius of LN is an emerging property of the system. More-
over the linear decay of the density function for LN over a
radius so much larger than its random counter part, and
that is related to the city’s historical suburban growth, can
be taken in consideration as a signature of the phenomena
called urban sprawl [18].

This behaviour can be better understood if we look
at Figure 6 where we show a representation of the shape
for the density distribution for LN (top panel) and the
GRPG (central panel). For LN, we can see that there is a
large concentration of intersections in the centre, while the
suburbs have a more homogeneous shape characterised by
high peaks. For the GRPG, the overall shape does not have
any large discontinuities. In both the panels, we notice
how the power law effect of the edge length distribution
of equation (1) produces local inhomogeneous patterns as
isolated peaks. This effect is more evident for LN. The
reason is that London grew to incorporate pre-existing
town centres. In the bottom panel of Figure 6, we show
the contour plot for the intersection density of LN with the
position of the town centres superimposed on this, noting
how the density pattern is correlated with them.

In the right panel of Figure 5, we show the compari-
son of the average length of the road fragments l(r) as a
function of the distance from the centre. In this case, we
see that the model agrees very well with the real net-
work for the first 15 km. The average increase in the
lengths of the edges of the considered graphs is a clear
evidence of the growth of both the systems in which on
average, the centres of the graphs are filled with short
edges and the periphery is sparser where there is space
for longer edges. The large fluctuations that are evident
in the GRPG model for large values of r are due to finite
size effects.

Even if planar graphs in nature are not characterised
by a high degree of connectivity for the vertices, the degree
distribution of different planar graphs show non trivial
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Fig. 6. (Color online) Panel (a): the intersection density pro-
file for LN. Panel (b): the intersection density profile for the
GRPG. Panel (c): the density contour plot for the intersections
in LN. The black circles show the current (2006) position of
the main town centres.

characterisations. For topological aspects, our networks
are completely specified by their weighted adjacency ma-
trix W = {wij}, where wij = lij , for 0 < i, j ≤ V , lij
being the length of the street segment connecting vertex i
and vertex j, if vertex i and vertex j are connected, and
wij = 0 otherwise. The degree ki of vertex i is defined
as the number of connections of vertex i, ki =

∑
j Θ(wij)

Fig. 7. Top left panel: the degree distribution P (k) for LN and
the ERPG. Top right panel: the degree distribution P (k) for
LN, the ERPG and the GRPG on a semi-logarithmic scale. The
parameter of the exponential function fitting the distribution
for the GRPG has a standard deviation σ = 0.02. Central left
panel: the strength distribution P (s) for LN and the GRPG
on a double-logarithmic scale. Central right panel: the strength
distribution P (s) for the ERPG on a semi-logarithmic scale.
Bottom left panel: the average strength 〈s(k)〉 as a function
of the degree k for LN on a semi-logarithmic scale. Bottom
right panel: the same function measured for the ERPG and
the GRPG on a double-logarithmic scale.

and in this case, it represents the number of streets inter-
secting at the given intersection. In the top left panel of
Figure 7, we show the degree distribution for LN and the
ERPG model using a linear scale. It is worth noting that
vertices with degree two were suppressed in the construc-
tion of LN. We observe two peaked distributions with a
maximum around the average degree, where it is possible
to appreciate that the peak for LN is much higher than
the one for the ERPG model. Moreover the maximum de-
gree for LN is 8 while it is 12 for the ERPG. In the right
panel of the same figure, we observe the behaviour of the
tail for the same distributions. It seems that they are both
ill-defined distributions, very similar to the ones found for
ant galleries in [19], but that to claim they show expo-
nential behaviour would be misleading. In the top right
panel of the same figure, we show the degree distribution
for the GRPG model. In this case, the distribution is not
peaked and the exponential behaviour is clearly distin-
guished with a maximum degree kmax = 24. This obser-
vation is very important. In fact, LN is a growing sys-
tem and the fact that it does not display an exponential
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Fig. 8. The average degree 〈k(r)〉 as a function of the distance
from the centre for LN and the GRPG. The LN data are well
fitted by a linear function.

degree distribution relates to its particular organisation
more than to its similarities to the ERPG.

In weighted graphs, the strength of vertices often pro-
vides important information about the system and is
strictly correlated to the degree of the vertices [20]. In
our case, the strength si of vertex i is defined as the sum
of the lengths of the street fragments intersecting that
vertex, si =

∑
j wij . In our three samples, the strength

measures and their correlations are quite diverse. In the
central panels of Figure 7, we show the strength distribu-
tion for LN, the ERPG and the GRPG. For LN (in the
central left panel), the strength distribution shows a clear
scale-free behaviour with exponent −3.87±0.06. We find a
similar behaviour in the GRPG (in the central left panel)
even if its scale free behaviour is not well defined, while for
the ERPG model (in the central right panel), the strength
distribution is a peaked function with an exponential tail.

To understand the correlations between strength and
degree of a vertex, in Figure 7 we plot the average strength
〈s(k)〉 which is measured as a function of k. In the case
of LN (in the bottom left panel), 〈s(k)〉 displays growing
behaviour that can be fitted with an exponential curve
within the error bars. In the bottom right panel on a dou-
ble logarithmic scale, we can observe how 〈s(k)〉 displays
linear growth, 〈s(k)〉 = 〈l〉k, for the ERPG, where 〈l〉 is
the average length of the edges . For the GRPG, this shows
super-linear growth, 〈s(k)〉 ∝ k1.34, as observed in many
other topological growing networks [21].

The last measure we show in this section is the average
degree of the vertices as a function of the distance from
the centre 〈k(r)〉. This allows us to see how much the
topological and metrical spaces are related. In Figure 8,
we show 〈k(r)〉 for LN and GRPG. In the case of ERPG
and GM, 〈k(r)〉 is just a constant function of r. In the
case of LN, 〈k(r)〉 decays linearly from the centre to the
periphery. In the GRPG, 〈k(r)〉 decays more rapidly. This
decay function is a signature of the growth of the system
where the centre is more densely connected.

Fig. 9. Top left panel: the frequency distribution P (Cl) for
the length of the cycles Cl for the LN, the GRPG and the
ERPG. The dashed line is a power law with slope −3. Top
right panel: the measure of the average length of the cycles
〈Cl(r)〉 as a function of the distance r from the centre. Bottom
left panel: the frequency distribution P (A) for the area of the
faces A for the LN, the GRPG and the ERPG. The dashed line
is a power law with slope −2. Bottom right panel: the measure
of the average area of the faces 〈A(r)〉 as a function of the
distance r from the centre.

2.2 Measures in the cycle space

It is interesting to observe a planar graph in its cycle space,
that is the space formed by all the edges of the graph
that are part of a closed polygon [13]. In fact it is in that
space that many of the planar graph properties are best
understood.

The length of a cycle Cl is defined as the number of its
edges or vertices which, is an important number in under-
standing the geometry of the graph. In the GM, the cycle
space is trivial. In the top panels of Figure 9, we show
the measures related to the cycle lengths in our networks.
The top left panel shows the frequency distribution P (Cl)
for the cycle lengths for LN, the ERPG and the GRPG.
It is interesting to note that this distribution has a power
law tail with a very similar slope for three of the networks
with exponent –3. The significant differences between LN
and the random graphs is that in LN, cycles of length
4 and 5 are more numerous than cycles of length 3 and
that the tail for LN is much longer than the tails of the
random networks. This is probably due to the existence
of geographical constraints in that LN growth forces the
creation of very large polygons (for instance around the
Thames seen from the right panel of Fig. 1). In the right
panel of Figure 9, we show the measure of the average cy-
cle length 〈Cl(r)〉 as a function of its distance r from the
centre for both the LN and the GRPG. The ERPG model
is not included in the figure since in that case 〈Cl(r)〉 is
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a constant function of r. In both the LN and the GRPG
model, 〈Cl(r)〉 is a growing function of r which is char-
acteristic of growing systems where central polygons are
smaller and the average connectivity is larger. Neverthe-
less the growth of 〈Cl(r)〉 for LN is more steady and it
is well fitted by a linear function. The decay behaviour of
〈Cl(r)〉 for large values of r is due to finite size effects.

The area of the faces A is also a measure used to char-
acterise urban networks [22]. In the bottom left panel of
Figure 9, we show the frequency distribution for P (A) for
the area A of the faces of LN, the ERPG and the GRPG.
For the LN, we find a good agreement with the power law
slope measured for the road network of Dresden [22]. Inter-
estingly we also find that other stochastic networks show
a similar behaviour to those of London and Dresden, sug-
gesting that the power law behaviour for the faces area
distribution is not likely to be a sign of complex self-
organisation of an urban system, nor of its growth.

In the bottom right panel of Figure 9, we show the
measure of the average area of the faces 〈A(r)〉 versus
the distance from the centre r for the LN and the GRPG
models. For the ERPG, 〈A(r)〉 is a constant function of r.
As we expect, for LN and GRPG, the area of the faces
is a growing function of r, supporting the hypothesis of a
strong mono-centric component in the growth of the city.
It is also interesting to note how the fluctuations grow
with distance from the centre.

2.3 Centrality measures

The closeness centrality measures how much a vertex is
to the traffic on the network, that is how much of the
network is easily reachable from all its different vertices.
It is defined as:

CC
i =

V − 1∑
i�=j dij

, (4)

where dij is the sum of the lengths of the street segments
forming the shortest path between vertex i and vertex j.
We believe that the inverse of equation (4), 1/CC

i , mea-
sured in km, gives a better understanding of the dynamics
of those networks, since it represents the average metric
distance between the intersection i and all the other inter-
sections of the graph. This gives an effective understand-
ing of the physical effort (the informational effort will be
considered in the next section) expended in navigating a
city. In Figure 10, we show the distribution P (1/CC) for
each of our networks. We can also see how the networks
are highly differentiated by this measure. The ERPG is the
one which is less travel friendly, the vertices being more
distant on average from all the other vertices, even if we
only consider the connected portion. The majority of ver-
tices lie on a plateau between 30 km and 46 km, that are
the values where these vertices are uniformly distributed.

On a travel friendly scale, the ERPG has lower central-
ity than the GM. The distribution is similar, presenting a
large plateau, but the plateau for the GM is now higher
and thinner, between 26 km and 37 km and the tail falls

Fig. 10. Probability distribution for the inverse of the close-
ness centrality P (1/CC) for the LN, the ERPG, the GRPG
and the GM.

exponentially for more than 10 km. Still considering the
travel friendly scale, the centrality of LN lies between the
static and growing models. For the LN, a plateau does not
really exist. After peaking around 18 km, the distribution
decreases with many fluctuations, but with an overall lin-
ear trend, to a maximum average distance of 40 km. Then
it appears that the most travel friendly pattern is that
given by the GRPG, where we find a large peak around
13 km and a fast and smooth decay until 32 km. The
extension of the GRPG city is smaller than in the other
models, as we have already noted. What is interesting is
the lack of a plateau for both the LN and the GRPG.

3 The dual representation and the alignment
problem

The network of urban streets shows scale-free properties
for its degree distribution when it is considered in its dual
representation, where the vertices are the streets and two
vertices are connected if the streets they represent inter-
sect [14]. This is important for it allows us to look at
the growth of cities in a novel way through an informa-
tive perspective. In this section, we examine in detail the
properties of the dual street network of London (hereafter
DLN) and we compare it to the properties of the dual
representations of the three other models that we have
introduced as our idealised baseline.

The procedure to build a dual street network is to as-
sign the same label or ID to the street fragments that be-
long to the same road using an alignment principle. Then
the dual representation of a planar graph is a network
in which the roads are vertices and two vertices are con-
nected if the roads they represent intersect. The procedure
used to obtain a dual graph from a planar graph is shown
in Figure 11. In that construction, long roads with the
same ID connect to many roads, while short roads such
as dead-ends, connect to just one or a very small number of
other roads. In this way, hubs form at all scales producing
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Fig. 11. The process to create a dual graph from a street
graph. Panel (a): a fragment of the street graph of London,
every different street segment has a different ID. Panel (b): the
same street network where the street segment ID are changed
after applying an alignment principle (the ICNP). Panel (c):
the final dual graph representation of the street network of
Panel (b), where the street IDs become the vertices and two
vertices are connected if the streets they represent intersect.

a characteristic shape of the degree distribution that is
common to many self-organising systems [12].

An important issue is to find an algorithm to estab-
lish how different street fragments might belong to the
same street, i.e. an algorithm to assign the ID to the dif-
ferent street fragments. In [6], a name-street approach is
considered where two street segments are given the same
ID if they have the same street name. Unfortunately, as
noted in [4], this approach does not consider the fact that
in many cities, many streets share the same street name
without intersecting. Also it is possible to find the same
physical streets that have two or more separate names.
London is rich in both of these phenomena. In our view,
the efficient approach called Intersection Continuity Ne-
gotiation (ICN) is worth considering [11]. This approach
starts from the principle that two street fragments belong
to the same road if the angle they form is close to 180
degrees. Then the procedure of the ICN is to rank pairs
of street fragments at a given intersection by the convex
angle they form. Then the same ID is given to the street
fragments that form the major convex angle.

This approach is very efficient but in our view, it fails
to correctly describe the situation shown in Figure 12.
Figure 12 shows how the ICN principle assigns the ID
to different streets at an unusual crossroad. Referring to
the figure, it seems more plausible to use a negotiation
principle that transforms street segment 3 into 1 as ICN
does leaving the other ID unchanged (panel (c) of Fig. 12).
This situation appears in reality when dealing with a ring
road or a beltway where other roads enter or exit.

Fig. 12. Panel (a): a generic crossroad with random labels.
Panel (b): the same crossroad where IDs are reassigned by
ICN principle. Panel (c): the same crossroad where IDs are
reassigned by ICNP principle.

To fix this problem, we have extended the ICN prin-
ciple to the ICN Plus (ICNP) principle in which the ICN
is considered in all the cases in which the larger convex
angle is formed between road segments that are not adja-
cent. In the case where two adjacent road segments form
the largest convex angle as in Figure 12, we give them
the same ID. But we do not change the ID of the other
street segments intersecting the vertex, considering them
as different roads. A more precise description of the ICNP
algorithm is given in Appendix B.

The networks obtained in this way are unweighted and
undirected. They are called information networks since
they describe the way people think about moving in a
city. To go from one point to another in a city, we do
not need to know all the street segments and intersections
that join the two points but only the name of the roads
that enable us to navigate. For instance, considering the
top panels in Figure 11, if we want to travel from street
segment 1 on the extreme left to the street segment 19,
we would normally go straight along road 1 and then turn
right onto road 19 as shown in panel b and not go straight
along line 1, then taking line 5, line 11, line 12, line 13 and
eventually turning right onto line 19 as shown in panel (a).
So we can say that to go from line 1 to line 19, just one
unit of information is required, as is clear from panel c of
the same figure. Then the maximum information required
to cross a city is the diameter of its information network,
not the diameter of its primal network, where the diameter
D of a network is defined as the maximal shortest path
connecting two vertices of that network.

It is worth noting that whatever algorithm is used to
create the dual representation, it always contains bias.
In our case, the longest road recognised has a length
of around 17 km. The orbital M25, for example, is not
recognised as a single road, nor are other important routes
such as the A40, connecting the centre of London to
Oxford. These biases are then reflected in the degree
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Table 1. Number of vertices V , number of edges E, average de-
gree 〈k〉, diameter D, and average clustering coefficient 〈C(k)〉
for the DLN, the DERPG, the DGRPG and the DGM.

Dual representation
V E 〈k〉 D 〈C(k)〉

DLN 74 782 107 988 2.89 33 0.2
DERPG 54 458 91 732 3.36 243 0.4
DGRPG 67 052 222 374 6.73 72 0.6
DGM 64 296 100 250 3.12 13 0

distribution whose exponential tail is not well understood.
Other solutions to the alignment problem are possible and
research on the topic is active [23].

4 Dual analysis

In this last section, we will draw the discussion to conclu-
sion by analysing the properties of the dual representation
of LN, of the ERPG (hereafter DERPG), of the GRPG
(hereafter DGRPG) and of the GM (hereafter DGM).
These networks are purely topological, in the sense they
are not embedded in Euclidean space per se. We will split
the section in two parts. In the first part we examine the
main topological properties of those binary networks such
as degree distribution, clustering coefficient and nearest
neighbour degrees, and in the second part, we analyse the
network using an informational approach through central-
ity measures.

4.1 Topological properties

In Table 1, we present the main topological properties
for the dual representation of the considered networks. In
the table, we show the number of vertices V , the num-
ber of edges E, the average degree 〈k〉, the diameter D
and the average clustering coefficient 〈C〉 for the four net-
works. We can already observe how different topologies
in the primary representation give rise to very different
dual networks. Remembering that in the dual represen-
tation, the number of vertices is the number of different
roads and that the number of edges is the number of inter-
sections between different roads, we see that in the DLN
there are a larger number of roads than those generated
in the random networks. In spite of this, the diameter of
the DLN is much smaller than the diameter of the ran-
dom networks, a diameter that has the size of the same
order of the logarithm of the number of vertices which
is a small world property [24]. This means that even if
random roads are longer than real ones, they are not or-
ganised to fill the space as efficiently as in the DLN. This
effect is very much related to the angular distribution of
the edges at the intersections of the primary graphs that
generate the differences in the average clustering coeffi-
cient to be explained below. In the case of the DGM, it
has already been shown [4] that this is a bipartite graph in

Fig. 13. The dual representation of the Grid Model (left
panel) is a bipartite graph (right panel) in which horizontal
lines and vertical lines become different families of vertices.

Fig. 14. Left panel: degree distribution P (k) and cumulative
degree distribution P (k∗ > k) for the DLN on a double-log
scale. Right panel: degree distribution for the dual network of
the DERPG model and the dual network of the DGRPG model
on a semi-log scale. The fat tail of the latter has been cut in
this plot, but it appears at kmax = 229.

which one family of vertices represent the horizontal lines
and the other family represent the vertical lines. Every
vertex of one family is connected with all the vertices of
the other family. From those vertices, small trees are gen-
erated (as in Fig. 13) which represent the m lines added
to the GM (see the introduction) to obtain the desired
average degree.

In the left panel of Figure 14, we show the degree
distribution P (k) and the cumulative degree distribution
P (k∗ > k) for the dual network of London. The exponent
of the best fitting line has been calculated for the cumula-
tive distribution. From the degree distribution, we can see
that a power law behaviour emerges with a fat tail. From
the cumulative distribution, we can see how the tail of this
distribution falls faster for large values of the degree. The
same behaviour has been observed at national scales [25]
which can been attributed to the natural boundaries of the
UK viewed as an island. We can say the same thing in this
case where a natural cut-off emerges for the finite sample
size. For the tail, we also have to consider the above men-
tioned biases due to the choice of the alignment principle
in the construction of the dual graph.

In the right panel of Figure 14, we show the degree
distribution P (k) for the DERPG and the DGRPG on
a semi-log scale. Notably the maximum degree for the
DERPG is kmax = 20 compared to kmax = 261 for the
DLN and kmax = 229 for the DGRPG. We argue that
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Fig. 15. Top panels: average clustering coefficient 〈c(k)〉 ver-
sus the degree k measured in the DLN and the DGRPG (left
panel) and for the DERPG (right panel). Bottom panels: av-
erage nearest neighbours degree as a function of the degree
〈knn(k)〉 measured in the DLN and the randomised DLN (left
panel), the DERPG and the DGRPG (right panel).

the static planar graph has a structure that does not al-
low long “roads” to form, while the tree growing structure
of the GRPG gives rise to “roads” with a length compa-
rable to the ones of the LN. Moreover it is interesting
to note how the distribution of the random networks is
radically different from the LN in terms of its information
space. In the stochastic models, we observe an exponential
behaviour for the degree distribution. In the case of the
DGRPG, this exponential behaviour encapsulates a fat
tail that appears at a maximum degree kmax = 229. We
are tempted to speculate that this exponential behaviour
relates to the lack of informational organisation of such
random systems.

The clustering coefficient or transitivity ci for a ver-
tex i is the ratio between the number of edges ei connect-
ing each other the nearest neighbours of vertex i and the
number of such possible edges, and it is defined as:

ci(ki) =
2ei

ki(ki − 1)
. (5)

The average clustering coefficient 〈c(k)〉 then counts the
number of triangles in the graph. In the top panels of Fig-
ure 15, we show the average clustering coefficient 〈c(k)〉
as a function of the degree k measured in our networks.
In the left panel, measures for the DLN and the DGRPG
are shown. The average clustering coefficient for the DLN
follows a power law with exponent −0.89± 0.01. This be-
haviour has already been noted in [11] for most of the
1 mile-square samples considered. This effect at a larger
scale makes it a characteristic signature of the dual rep-
resentation of an urban network. The average clustering

coefficient for the DLN is 〈c〉 = 0.2 ± 0.3, smaller than
the clustering coefficients measured in the DERPG and
in the DGRPG. This means that in the dual representa-
tion less triangles form than in the random counterparts.
The poorer triangular structure of the dual representation
of urban street network reflects the angular structure of
the primary graph where roads tend to be orthogonal and
where cycles of length 4 or 5 are more likely to happen
than cycles of length 3 (see top left panel of Fig. 9). In the
same panel, the average clustering coefficient 〈c(k)〉 as a
function of k is shown for the DGRPG. The values for
〈c(k)〉 are much larger than the ones found in the DLN,
with an average clustering coefficient 〈c〉 = 0.6±0.3. That
is due to the greater probability in the random network
for triangles to form (noting that triangles in the primary
space correspond to triangles in the dual space). The be-
haviour of 〈c(k)〉 is now less smooth and not well defined
and its tail is much steeper than that in the DLN.

In the top right panel of Figure 15, we show the av-
erage clustering coefficient 〈c(k)〉 as a function of k for
the DERPG. The average clustering coefficient is 〈c〉 =
0.4 ± 0.3, larger than the DLN one, confirming the fact
that there are more triangles in a random planar network
than in an urban planar graph. Interestingly the shape
of the measured function decays exponentially with the
degree.

The average nearest neighbours degree as a function of
the degree 〈knn(k)〉 quantifies the second order correla-
tions of complex networks and is defined as:

〈knn(ki)〉 =
∑
kj

kjP (kj |ki) (6)

where P (kj |ki) is the conditional probability that a vertex
with degree ki has a neighbour with degree kj . We have
to be careful to analyse the measures of 〈knn(k)〉. In fact
it has been shown that such networks reveal structural
correlations that are due to the degree distribution and to
its cut off for large degrees [26]. Hence, for understanding
the correlations of the system, it is important to compare
the actual 〈knn(k)〉 with the one obtained in a randomised
network. In the bottom left panel of Figure 15, we show
the measure of 〈knn(k)〉 as a function of the degree k for
the DLN and the same measure for a network derived from
DLN by rewiring all the edges and keeping the degree se-
quence unchanged. In this way we can see that in the
DLN, there are disassortative correlations for small values
of the degree, where small degree vertices tend to be con-
nected with high degree ones, while for larger degrees, the
network looks uncorrelated. In the bottom right panel of
Figure 15, we show the same measure for the ERPG and
the GRPG. The former shows a structural disassortative
behaviour while the latter shows a structural assortative
behaviour, where high degree vertices tend to connect to
high degree vertices.

4.2 Centrality measures

The shortest path dij from vertex i to vertex j is defined as
the number of edges that form the geodesic that connects
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Fig. 16. Top panels: distribution P (d) for the average min-
imal path d between all the pairs of vertices of the network.
Left panel: comparison between DLN and the DGM. The DLN
distribution is well fitted by a Gaussian distribution (reduced
χ2 = 6.8 × 10−6), while the DGM by a lognormal distribution
(reduced χ2 = 6.1 × 10−6). Right panel: comparison between
the DLN, the DERPG and the DGRPG. A semi-log scale is ap-
plied to better resolve the tails and Gaussian fits are performed
to clarify the deviations. Bottom panels: in the left panel the
distribution P (CB) for the betweenness centrality CB for the
DLN, the DERPG, the DGRPG and the DGM. In the right
panel a particular view of the measured P (CB) for the DGM
fitted by a Gaussian distribution.

vertex i to vertex j and we have that 1 ≤ dij ≤ D, where
D is the diameter of the graph. In the top panels of Fig-
ure 16, we show the frequency distributions P (d) for the
shortest paths measured between each pair of vertices in
our networks. This is a very important measure since it
quantifies the informational content of the network where
dij represents the mental effort we incur in navigating a
city. In this context, we can see how the distribution for
the DLN is displaced in between the DGM, the easiest
“city” to navigate, and the random models, the most dif-
ficult “cities” in which to move. In the top left panel of
Figure 16, we show P (d) for the DLN and the GM. In
the case of the DLN, P (d) is well fitted by a Gaussian
distribution centred at pc = 11.74 ± 0.05, with a width
or variance of σ = 7.14 ± 0.09. pc represents the average
information required to move from one point to another
in the city.

For the DGM the distribution P (d) is well fitted by a
lognormal distribution centred in pc = 3.940± 0.006 with
width σ = 0.230 ± 0.001. That means that the average
information to travel in a grid-like city is much less than
the one we find IN a large city like London as we could
have been expected. In the right panel of the same figure,
we show the measures of P (d) for the DLN and the random

networks. A semi-log scale is used to better resolve the
tails of the distributions. For the random networks, we find
that the distributions are shifted to the right in respect of
the DLN, meaning that the information required to travel
between two random vertices is larger than in the real
network.

P (d) for the DGRPG is still well fitted by a Gaussian
distribution even if we can see that the tale behaves
slightly differently. The centre of the distribution is pc =
22.70±0.02 and the width σ = 20.1±0.3. The case of the
DERPG is interesting too for the measure computed on
the connected part of the network is smaller than other
networks under consideration. Still the informational con-
tent of the network is smaller than those found in the
other networks, in the sense that to navigate the ERPG,
much more mental effort is needed. We can see from the
figure how the tail of the distribution decays faster than
the Gaussian curve. The centre of the distribution is at
pc = 96.9 ± 0.3 and its width σ = 99.0 ± 0.7. We believe
that the reason why the GRPG has more informational
content than the ERPG is that the GRPG grows as a tree
and this growth gives additional information content for
navigation of the network.

The betweenness centrality CB
v for vertex v is defin-

ed as
CB

v =
2

(V − 1)(V − 2)

∑
i<j,i�=v �=j

givj

gij
(7)

where gij is the number of geodesics (shortest paths) con-
necting vertices i and j and givj is the number of geodesics
connecting vertices i and j that contain vertex v. CB

v is 0
if v has degree one, that is if it represents a dead end
road. The normalisation factor takes account of the fact
that the maximum value for the betweenness centrality is
achieved for the central vertex of a star graph [27]. Hence
CB

v is a measure of how probable it is to travel on a cer-
tain road when moving from one a road to another in a
city. The distribution function P (CB) describes the hier-
archy of betweenness centrality, if any exists. In the bot-
tom left panel of Figure 16, we show P (CB) measured
for our dual networks. Again we see that this measure
provides a good classification for the different networks.
In particular, we see that in the DLN, in the DERPG
and in the DGRPG a scaling distribution emerges, im-
plying a hierarchy in the centrality of the roads. For the
DGM, we observe a scaling relation for low values of CB
related to the tree structures of the DGM (see Fig. 11).
Then CB is Gaussian distributed around a well defined
average (see bottom right panel of Fig. 16) and this im-
plies that in a grid, the information content of roads is
nearly equivalent. The values assumed by CB are related
to the number of different equivalent geodesics gij that
join different roads, where as gij increases, CB falls. In this
sense, we can understand the displacement of the distri-
butions, the extremes being the DGM, where many equiv-
alent geodesics exist between two roads, and the DERPG
where not many different choices exist in traveling from
one point to another in the graph. In the between, we find
that the DLN and the DGRPG have similar behaviour.
We thus believe that the tree growing structure of the
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DGRPG is very important in reproducing the hierarchy
of the betweenness centrality associated with roads in the
DLN.

5 Conclusions

A network theory approach to the study of planar graphs
and urban networks is a natural consequence of the study
of growing cities that fill their space in the manner of self-
organising systems but it has not been widely explored
to date. Indeed in this paper, we are the first to demon-
strate how this can be useful for providing a description
of urban growth. Many of the concepts that are crucial
in urban planning, such as accessibility and density used
in measuring urban sprawl find natural definitions in the
interplay between these primary and dual representations
of urban systems [28].

In this paper, we have begun a deeper analysis of street
networks for large cities where we develop both primal
and dual representations. To contextualise these results,
we considered three models for generating planar graphs
based a grid, a static planar graph and a growing pla-
nar graph. To our knowledge, this is the first time that
a growing planar graph has been introduced for this kind
of urban analysis, where we have illustrated that many
geometrical and topological features of the LN are emerg-
ing properties of a growing system and that the GRPG
is the best null model for understanding correlations and
properties of the LN.

In its primary representation, we found that the de-
gree distribution of the LN is not a trivial outcome of the
planarity criteria. It is quite different from the exponential
degree distribution that we found for the GRPG, and this
is clearly a result of more complex underlying organisation
principles. Also in its primary representation, we have ex-
plored its topological and geometrical properties and these
measures in the cycle space contra that the properties of
planar graphs provide a richer texture for description and
analysis than envisaged hitherto.

In its dual representation, we have had the opportu-
nity to observe how a real system is very different from
a random one in terms of its information space. Interest-
ingly we found that if the degree distribution of the DLN
is scale free, those in random planar graphs are exponen-
tial. This means that the scale free distribution found in
urban structure is a signature of a complex organisation
within the information space and the parallels with clas-
sical topological networks behaviour are thus straightfor-
ward [12].

In our view, the underlying principles of the organisa-
tion of the street network of large cities like London can
be framed through a comparison of the centrality mea-
sures in their primary and dual representations. In fact,
we found that while the GM is easy to navigate in terms
of its information space, it is costly to navigate in met-
rical space, and while the GRPG is easier to navigate in
its metrical space, it is difficult to navigate in its infor-
mation space. Thus the LN appears to be a self-organised

compromise between those two models, a system that bal-
ances the effort in spatial displacement which attempts to
minimise the amount of information that acts to generate
that displacement. Further developments of this research
will pursue the applicability of this network model in de-
veloping descriptions and analysis of urban systems that
reflect least effort principles. Moreover a more detailed
analysis of growing random planar graphs with different
arc length distributions will be interesting to understand
more general properties of growing random planar graphs.

This research was part funded by the EPSRC SECSE project
(www.secse.net/) and by the GLA (Greater London Author-
ity) Economics Division. We wish to thank Konstantin Klemm
for the useful discussions about the cycle space. Many of the
measures in this paper were done using the freeware R package
IGraph developed by Gábor Csárdi and Tamás Nepusz [30].

Appendix A: The London street network

The London street network was derived from two Ord-
nance Survey (OS) dataset products [29], OS MeridianTM
2 which includes Motorways, A Roads, B Roads and Minor
Roads, and the OS Integrated Transport Network (ITN).
The latter includes all the above roads but in more detail
with respect to a much greater number of minor roads.
The reason two networks were used was that the ITN
layer contains more detailed street geometry such as traf-
fic islands and roundabouts and therefore more edges and
vertices. Many of these were not needed for the analysis as
we were only interested in roads connecting to other roads
but this data provided the detail needed for construction
of the full network. For example, each lane entering into
the roundabout was represented as a separate vertex while
traffic islands have two edges and two vertices. To reduce
the number of vertices and edges, roads in the ITN layer
that were represented in Meridian dataset were removed
(through a buffering operation). This left only the mi-
nor roads that where not part of Meridian network which
could then be snapped to the Meridian network.

Appendix B: The ICNP algorithm

We start with a planar graph G = {V, E} in which ev-
ery edge has a different label or ID, represented by an
integer number 1 ≤ ID ≤ E. We randomly pick an edge
of the graph and for each of its vertices, we consider all
the edges intersecting at the vertex. Then we rank pairs
of edges according the maximum convex angle they form.
We next consider the pair of edges forming the larger con-
vex angle and we relabel the edge with major ID giving
to it the ID of the other edge. We repeat this operation
for the remaining edges at the intersection. If the num-
ber of edges at the intersection is odd, then the last edge
in the hierarchy of convex angles is not relabelled. If the
edges forming the major convex angle are adjacent, then
we relabel them according to the above description, and
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we leave the ID of all the other edges at the intersection
unchanged. We repeat this process for N ∼ E3/2 times.
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