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Abstract. Many aggregate distributions of urban activities such as city sizes reveal scaling but hardly
any work exists on the properties of spatial distributions within individual cities, notwithstanding con-
siderable knowledge about their fractal structure. We redress this here by examining scaling relationships
in a world city using data on the geometric properties of individual buildings. We first summarise how
power laws can be used to approximate the size distributions of buildings, in analogy to city-size distri-
butions which have been widely studied as rank-size and lognormal distributions following Zipf [Human
Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, 1949)] and Gibrat [Les Inégalités

Économiques (Librarie du Recueil Sirey, Paris, 1931)]. We then extend this analysis to allometric relation-
ships between buildings in terms of their different geometric size properties. We present some preliminary
analysis of building heights from the Emporis database which suggests very strong scaling in world cities.
The data base for Greater London is then introduced from which we extract 3.6 million buildings whose
scaling properties we explore. We examine key allometric relationships between these different properties
illustrating how building shape changes according to size, and we extend this analysis to the classification
of buildings according to land use types. We conclude with an analysis of two-point correlation functions
of building geometries which supports our non-spatial analysis of scaling.

PACS. 89.65.Lm Urban planning and construction – 89.75.Da Systems obeying scaling laws – 89.75.Fb
Structures and organization in complex systems

1 Introduction

Cities are structured according to the rules of spatial com-
petition which manifest themselves in self-similar patterns
which are fractal. Populations tend to cluster around mar-
ket locations which reflect a hierarchy of needs from the
essential to the specialist, ordered spatially according to
the strength of demand while densities tend to reflect
economies of agglomeration which generate a small num-
ber of very high density locations and a large number of
lower ones. The patterns that emerge are sustained by
transportation routes that tend to fill space in the most
economical way, minimizing length and maximizing ca-
pacity, whose spatial organization is usually hierarchical
and tree-like. Cities are thus composed of fractal-like clus-
ters on many spatial scales whose order appears to follow
well-defined numerical rules of scaling.

Most demonstrations of such order in fact pertain to
systems of cities rather the spatial organization of the
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city itself, focusing on size distributions in which spa-
tial order is implicit [1]. The size distribution of cities
in fact is scaling with Zipf’s [2] rank-size rule acting as
the bench-mark against which many other spatial distri-
butions are compared and contrasted. Most of the work
to date on city-size distributions throws away any spatial
structure that exists. Cities measured by their popula-
tions, incomes or employment, are considered as dimen-
sionless points with their sizes reflecting competition be-
tween whole cities rather than competition between their
component parts. In essence, the fact that there are a small
number of large cities and a large number of small and that
this distribution manifests a regularity which appears per-
sistent through time, reflects the consequence of competi-
tive processes under resource limits: there is simply never
the resources or demand to sustain large numbers of large
cities, and thus most cities remain small. The same mech-
anisms clearly exist at the more local scale, within cities
with the competition perhaps being less fierce but regular
ordering of populations and other activities by size being
the norm rather than the exception.

http://dx.doi.org/10.1140/epjb/e2008-00251-5
http://www.epj.org


304 The European Physical Journal B

Inside cities, the predominant theory of ordering is
based on a microeconomics that suggests that densities of
population, rent, and employment decline with increasing
transport costs from the most intensive hubs or clusters
of economic activity [3]. It is easy to speculate that such
order is consistent with a regular size distribution of pop-
ulation densities for hypothetical models where transport
cost or distance from any point is equated with the rank
order. But such research has never been followed up and
we will simply note it in passing. Research on scaling dis-
tributions barely touches the spatial structure of the city
where the focus has been much more on fractal patterns
rather than their scaling structure [4]. In this paper, we
will extend the study of size distributions to the internal
structure of cities treating spatial structure only implic-
itly, demonstrating that scaling orders are as strong within
cities as between, and then reintroducing space to show its
relative importance.

There is an additional twist to our analysis of intra-
city-size distributions for our focus here is on geometric
rather than economic or demographic attributes of the
city. We consider that scaling in cities is strongly related
to the constraints that geometry imposes on density and
nearness and thus we will examine the size distributions
of buildings in terms of their Euclidean footprint – area,
perimeter, height and so on – making the rather loose
argument that these sizes reflect indirectly population and
employment volumes. Moreover, as buildings grow in size,
their shape must change to enable them to function and
thus their scaling can be linked to their allometry. In fact
a sound theory of urban allometry should relate social and
economic activity to building geometry and in this paper,
we hope to set the agenda for further work in this area.

To date, work on the scaling of activities in cities has
been sparse. As remarked, the study of rank-size distri-
butions across cities has been extensive and work on ur-
ban density profiles has been significant. But there has
barely been any work on building geometries with the ex-
ception of Bon [5] and Steadman [6]. There has been some
on transport and infrastructure supply networks [7–9] and
some on the allometry of transport networks [10–12]. Cur-
rently, West, Brown, and Enquist [13] are beginning to
apply their theory of metabolic scaling to cities and so-
cial systems [14,15], thus providing a marker for a better
understanding of the way cities scale as they grow.

In the next section, we will introduce the idea of scaling
as an approximation to some underling order in the size of
things, relating this to ways of representing this order as
densities and distributions, and we will link this to the key
allometric relationships that characterize building geom-
etry in terms of their volume, the area of their footprint,
their height, and their perimeter. Our first foray into anal-
ysis looks at scaling in the height of buildings world-wide
and in three cities – London, Tokyo and New York from
the Emporis data base (http://www.skyscraper.com/).
We show quite conclusively that these distributions can
be well approximated by rank-size distributions that im-
ply power laws. We then outline the main database that
we are working with for Greater London which contains

some 3.6 million building blocks. Analysis of this data then
proceeds, first for rank-size scaling of building geometries,
then for allometric relationships. We finally introduce two-
point correlation measures of the spatial distribution of
these building geometries demonstrating that the strong
scaling relations already detected, are not completely de-
stroyed when we extend the analysis to include their spa-
tial extent.

2 Approximating urban order through
rank-size scaling

It is over 100 years since distributions of objects and
attributes characterizing human populations such as
city sizes and incomes were first described using power
laws [16,17] with Zipf’s [2] work popularizing the idea
in the mid twentieth century as the rank-size rule. Since
then, there has been a slow realization that a more likely
form for such distributions is the lognormal with simple
stochastic models, particularly those based on growth by
proportionate effect due to Gibrat [18], finding favor as
one of the generating mechanisms of such phenomena.
The current conventional wisdom is that the power law
is a good approximation to the distribution of the lognor-
mal in its ‘fat tail’ which describes the form of the largest
sizes in the distribution. We will follow this convention
here, not seeking to fit building size distributions to the
lognormal but assuming that they can be approximated as
power laws. As we shall see, the distributions for Greater
London in fact show little sign of lognormality and thus
our assumption appears tenable. Although considerable
effort has been made in fitting such distributions using
the original Zipf rank-size relationships, these are directly
related to the underlying density and cumulative densities
of their size distributions [19,20]. We will thus first intro-
duce these transformations from their densities to their
rank-size distributions providing a clear basis for our es-
timation procedures.

To illustrate the way we transform densities into dis-
tributions, we first define density pi where i is the object
in question, in this context, the location of a building.
We order these locations from the smallest to the largest
densities and thus change the index from i to k. The den-
sity and distributions we work with are thus based on pk

which follow the order from the smallest to the largest.
To plot the probability density function (PDF), we usu-
ally bin the data, which for systems where the sizes of each
object follow a power law, provide a distribution which is
highly skewed to the left. In fact, there has been a long de-
bate about whether such distributions follow a power law
or a lognormal for many distributions resemble a highly
skewed normal distribution where the power law is used
to approximate the fat or heavy tail. Apart from noting
this here [21,22], we will not pursue it further as it is con-
troversial when applied to the way buildings are located,
constructed and evolve in cities. The cumulative distri-
bution function (CDF) defined as F (pK ≤ pk) can be
computed from the raw data as

∑K
k=1 pk without binning

and it is thus preferable to work with the data in this

http://www.skyscraper.com/
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form. This is equivalent to the integral of the continuous
density. In fact, the normal practice in examining such
size distributions is to use the counter or complementary-
cumulative distribution function (CCDF) which we define
here as r = F (pK ≥ pk) = N − F (pK ≤ pk). The CCDF
is none other than the rank-size distribution defined by
Zipf [2] and used extensively in approximating the fat tail
as a power law. Note that henceforth r will be used to
define rank in terms of the ordered sizes defined by k.

To illustrate how we assume scaling in such distribu-
tions, we usually plot the CCDF on a logarithmic scale.
This plot gives greater visual weight to the larger values of
density and it is intuitively clear that the relationship can
be approximated by a straight line which is the signature
of a power law. We now approximate the power law as a
continuous density suppressing the index k as

f(p) ∼ p−α (1)

where α is the power of the density. The cumulative (and
counter-cumulative which has the same functional form)
is the integral of (1) and is

F (p) ∼ p−α+1 (2)

which we can also write explicitly in rank-size terms as

r ∼ p(r)−(α−1). (3)

The usual form however is where density is written as a
function of rank. Then from equation (3)

p(r) ∼ r−
1

α−1 = r−β , (4)

where we now define β as the (inverse) power.
From equations (1) to (4), it is clear that if such an ap-

proximation is warranted, then the parameter of the den-
sity function α must be greater than 1 for the cumulative
distribution function to be defined. If we logarithmically
transform (4), we produce the linear equation

log p(r) = log G − β log r (5)

which can be estimated in a straightforward manner using
regression. In various applications, we have used the Hill
maximum-likelihood estimator favored by Newman [20]
although here we have kept to the traditional method
of regression because as we will see, the scaling for the
Greater London building geometries is so clear that we
consider regression to be quite robust. We have not tested
the degree to which these distributions are lognormal or
scaling but Clauset et al. [23] have introduced a series of
tests to enable this. In future work, we will follow this
best practice but as this paper is simply an exploration of
the extent to which scaling might be present in building
geometries and allometry, we stick with current practice.

3 Allometry in urban size distributions

In previous work in measuring scaling in cities, the focus
has been on populations and related attributes where in-
dividuals are aggregated into small zones or indeed entire
cities whose size distribution shows scaling. However here
our focus will be upon building sizes which do not need

to be so aggregated and this tends to make the analysis
somewhat more direct, hence simpler. We first need to
define the geometric properties of buildings that we will
use to measure their size. Consider a building to be an
irregular block defined in terms of the appropriate lengths
of its three dimensions. For each building, height Hj , the
area of its footprint Aj , the perimeter of this area Lj , and
the building volume Vj = AjHj can be calculated directly
although volume which is probably the best measure of
size, is a product of all three dimensions, in turn a func-
tion of the area and height measures. Each of these has a
rank order r which we will test for scaling using power law
approximations H(r) ∼ r−βH , A(r) ∼ r−βA , L(r) ∼ r−βL

and V (r) ∼ r−βV .
However what is of particular interest is the way these

geometric measures relate to one another as their over-
all sizes change. This is allometry. The critical hypothesis
is that as the size of the typical elements change, these
relations may well depart from the standard geometric re-
lations that characterize length, area, and volume. The
allometric hypothesis suggests that there are critical ra-
tios between geometric attributes that are fixed by the
functioning of the element in question and if the element
changes in size, these ratios need to remain fixed for the el-
ement to still function. Often the geometry has to change
if these ratios are fixed [24]. A good example relates to
natural light penetrating buildings. As natural light de-
pends on the surface area, then to preserve a given ratio
of natural light for the volume of the building, the shape
of the building has to change if the building is increased in
size. In short, the surface area does not change at the same
rate as volume and if the ratio has to be fixed to make the
building function, then the volume has to change. This
implies a change in shape as the building increases in size.

As yet there is no well worked out theory of urban al-
lometry; indeed there is no complete theory of size in bio-
logical systems from whence these ideas arise [25] although
there are various theories in the making [13]. We will be-
gin by stating basic geometric relations now assuming an
idealized building to be a cube with its basic linear unit
as L. L first determines the area A as L2 and then volume
V as L3 from which it is clear that V = A L. Standard
allometric relations first proposed by Huxley [26] can be
immediately derived which imply changes in the volume,
area or length relative to each other of these measures.
For our cube (which can be easily generalized to a less
uniform geometry), A = V 2/3, L = A1/2, and L = V 1/3.
These imply that as the volume grows, the area grows at a
rate 2/3rd’s the rate of volume growth. This can easily be
seen in the relative growth rate or ratio of dA/A to dV/V
(assuming a unit of time) as follows

dA

dV
=

2
3
V (2/3)−1 =

2
3

V 2/3

V
=

2
3

A

V
. (6)

Rearranging terms in (6), we get the ratio, the relative
growth of dA/A to dV/V , as

dA

A

/
dV

V
=

2
3
, (7)
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which can be easily generalized for any scaling parameter
λ. The general allometric relation relating some physical
property y of an object to another x is thus

y = Gxλ, (8)

where the scaling parameter is the relative growth rate of
y to x

λ =
dy

y

/
dx

x
. (9)

λ is also the elasticity as defined in economics. Equa-
tions (8) and (9) can thus be applied to any relation-
ship which might be scaling with respect to different mea-
sures of size where these sizes imply differential relative
growth [27].

To simplify our treatment, we assume that the entire
array of buildings can be represented as blocks based on
polygonal footprints with a standard height. In fact this
is the case as we will see in our buildings data base where
buildings are constructed from plot area and mean height
and where more complex buildings are glued together from
simpler blocks. Then in terms of building blocks, linear di-
mension will involve heights Hj in the (z) dimension and
vector lengths in the (x, y) plane from which the area of
the plot Aj , its perimeter Lj, and its volume (or mass) Vj

can be computed. We will not compute surface area of the
building, or any internal measures of circulation or areas
of interior space. These are not yet possible although cur-
rently the databases are being augmented to deal with
such complexities. These four measures are defined for
each building which is located at a point or centroid j
(or toid in the jargon of the relevant geography1). We are
interested in their scaling with respect to rank-size which
we have hypothesized above but we are also interested in
how they scale with respect to each other, allometrically.
The following scaling relations are stated:

Hj = Z1 Lκ
j ; Aj = Z2 Lη

j ; Vj = Z3 Lμ
j

Aj = Z4 Hϕ
j ; Vj = Z5H

χ
j

Vj = Z6A
ϑ
j

⎫
⎬

⎭
(10)

where the Z∗ are the constants of proportionality and the
power symbols are the appropriate allometric parameters
– relative rates of change.

Our key interest in urban allometry is to find out
whether the scaling between area and volume implies
changes in the shape of buildings. In terms of the rela-
tions in (10), we would expect the volume to scale as the
cube of height and perimeter, and as the square of the plot
area. Plot area is likely to scale as the square of height and
perimeter while perimeter and height scale with each other
linearly. These are the baseline allometries that we might
expect. However if there are changes of shape, then these
will be reflected in the parameter values that are estimated
from the equations in (10). In fact, as it is likely that there

1 A toid (TOpographic IDentifier) is a unique reference iden-
tifier for every map feature in the UK,
see http://www.ordnancesurvey.co.uk/oswebsite/freefun/
geofacts/geo1201.html

will be considerable variation around these forms for all
buildings, we will disaggregate the set of all buildings into
different land use types which should reveal differences,
particularly between buildings in commercial and residen-
tial use.

Currently we are not able to measure the surface area
of buildings from the database and this is unfortunate
as this may scale quite differently from the 2/3rd’s ratio
that pertains to the standard allometric equations. This
is because the skin of the building is the conduit for light
and energy. Buildings cannot maintain their volume indef-
initely through increasing their floor areas because such
areas cannot be serviced through natural light and other
forms of externally supplied energy. Thus there are limits
on shape in this regard. This is why it is likely that as
buildings increase in size, they expand vertically rather
than horizontally which are the kind of deviations from
standard allometry that we are seeking. Our ultimate con-
cern in this work is to count the number of building types
by land use and to link these counts and their shapes to
energy emission in buildings as well as issues involving
circulation both within and between buildings.

4 Building data and the preliminary analysis
of heights

To show that scaling exists in the size of buildings, we
begin by selecting height data for the top 200 build-
ings worldwide and compare these with the same number
for London. These data are from the Emporis database
(http://www.skyscraper.com/)which contains quite de-
tailed information about the largest buildings in 50 000
cities worldwide with up to 3000 of the largest buildings
from the largest cities. We will also examine three cities
in more detail – London, New York and Tokyo – as a
prelude to our work with the Greater London buildings
database which we outline below. This is taken from our
Virtual London model which consists of building blocks
constructed from digital data sources. In Figure 1a, we
show Zipf plots of the top 200 buildings by height world-
wide, for London from the Emporis database, and for
London from our own database. We have also graphed
the top 200 cities by population in the year 2006 taken
from UN sources to show that scaling in population is a
little more extreme than for high buildings. In all the Zipf
plots that we introduce henceforth, we normalize the data
in the following way. We normalize the rank r by dividing
by its maximum rmax and for the size variable, height Hj

say, we divide by its mean 〈Hj〉. Our plots are then based
on graphing Hj /〈Hj〉 against r/rmax, thus enabling us to
directly compare data by collapsing all the plots onto one
another.

There is very clear scaling in all four data sets and we
present the parameters of these in Table 1. The slope of the
world cities data is steeper than the buildings data which
implies that there is less competition for activity inside
these cities than between them. We have also examined
the same scaling in building heights for three world cities

http://www.ordnancesurvey.co.uk/oswebsite/freefun/
geofacts/geo1201.html
http://www.skyscraper.com/
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(b)(a)

Fig. 1. Initial analysis of building heights. (a) Top 200 buildings by height in the World and London, and top 200 city
populations. (b) Top building heights in New York, Tokyo and London.

Table 1. Scaling parameters for the preliminary analysis of building heights.

world world London Virtual Tokyo London New York

cities (1) buildings (2) Emporis (2) London (3) (2) (2) (2)

N 200 200 200 200 1036 1302 2424

scaling
0.652 0.162 0.262 0.234 0.377 0.288 0.478

parameter βH

correlation
0.970 0.995 0.983 0.992 0.827 0.979 0.919

squared

density parameter
2.534 7.159 4.823 5.269 3.650 4.477 3.094

α

Sources: (1) United Nations (http://unstats.un.org/unsd/) (2) Emporis (http://www.skyscraper.com/), and (3) Infoterra
(http://www.infoterra-global.com/).

from the Emporis database and in Figure 1b we show
these building heights over a wider range of magnitudes
for Tokyo, London and New York. The results which are
also shown in Table 1 imply that New York has greater
competition than Tokyo and that London has the flattest
profile in terms of rank-size scaling. Although the fit of
the power law to the London and World data sets is good,
this is less so for Tokyo and New York where there is
clear evidence of lognormality in the plots even at their
upper end. This simply confirms the observations made
above about needing to exercise care in approximating
such urban distributions by power laws.

This preliminary analysis gives us some confidence
that there is scaling in building geometries leading us
to develop the analysis of the much larger database for
London based on our 3-D GIS/CAD model of London
which we refer to as Virtual London [28]. This is a digital
model of all building blocks within about 40 km of the
CBD – the City of London or ‘square mile’ – covering the
33 boroughs comprising the Greater London Authority
(GLA) area which has an extent of 1579 square kilome-
ters. The data set is unique in that it has been created
automatically from two main sources of data: first vector

parcel files from Ordnance Survey’s MasterMap which
code all land parcels and streets to about one meter accu-
racy (http://www.ordnancesurvey.co.uk/oswebsite/
products/osmastermap/); and second a data set of build-
ings heights constructed from InfoTerra’s LIDAR data
which produces a massive cloud of 3-D x-y-z data points
which when used in association with the vector parcel
data, can be used to extrude all buildings. In this data
set, there are some 3, 595, 689 (∼=3.6 m) distinct build-
ing centroids (toids). We are currently dealing with all
3.6 million although we only use a subset of these in our
scaling and allometric analysis. In future work, we will be
aggregating toids to ensure that we are dealing with ap-
propriate blocks. This becomes critical when land use is
to be assigned to each building block because land use is
tagged to street addresses which are a subset of all toids.

To give some idea of the range of this data set, the
maximum height of any block is 204.06 m, the Canary
Wharf Tower in the London Docklands. The mean height
is 5.76 m and the standard deviation is 3.29 m which shows
that the frequency of building heights is very skewed to
the left, reflecting the fact that this distribution is likely

http://unstats.un.org/unsd/
http://www.skyscraper.com/
http://www.infoterra-global.com/
http://www.ordnancesurvey.co.uk/oswebsite/
products/osmastermap/
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to follow a power law2. For illustrative purposes only the
top 10 blocks by height in London are 204, 197, 169, 160,
151, 150, 138, 130, 128, and 123 meters in comparison with
the top 10 from the Emporis world database which are
509, 452, 452, 442, 421, 415, 391, 384, and 381. London’s
highest building is not in fact in the top 200 in the world
and from the regression in Table 1 associated with the
plot in Figure 1a, we can estimate its rank as about 400.
London is not a city of tall buildings.

From the data set, we are currently working with the
perimeter of each plot which is computed directly from the
MasterMap data, and the mean height of a plot which
is important as there are many different heights from the
LIDAR data reflecting complex roof shapes, masts, air
conditioning units and so on. Other measures of height
such as median and mode do not change the results below
substantially. We compute volume by taking the area of
the plot and multiplying it by its height. This does not
take account of course of the fact that some buildings will
taper but currently we are not able to do much about this
as we do not have elaborate algorithms in place to con-
struct intricate roofing shapes. We also are able to classify
these buildings by land use from the MasterMap Layer
2 where we have land uses associated with each street ad-
dress for which there is a toid. However there are many
blocks that do not have street addresses and these tend to
be part of other building complexes and/or are very small
and somewhat idiosyncratic in their form, such as sheds,
lean-to’s and such-like bric-a-brac. We have various algo-
rithms for joining unclassified polygons to those which are
already classified and currently we consider the data set
to be robust. There are over six hundred different land
use types in the MasterMap data and we have classi-
fied these into nine major types which we list as the toids
classified with at least one residential, office, retail, ser-
vices, industrial, educational, hotel, transport, and general-
commercial land use. We have not yet broached the dif-
ficult question of multiple uses for if we have a building
with more than one land use classifier, we simply include
it in the appropriate analysis. We have not yet tackled this
double counting.

5 Rank-size distributions and allometric
analysis of building geometries

We begin with the aggregate scaling relations which result
from ranking the area {Aj}, perimeter {Lj}, height {Hj}
and volume {Vj} data for a slightly reduced data set of
about 3.58 million buildings. We show these in Figure 2
which also contains the same scaling for each of the land
uses which we will describe below. What this figure re-
veals is remarkably strong linearity over many orders of
magnitude with the plots collapsing dramatically for the
million or so smallest buildings (which are less than about
25 square meters in volume) and quite definitely represent
the bric-a-brac of urban construction picked up from the

2 This relatively low average height compared to the largest
building in Greater London simply illustrates that the database
is dominated by low rise residential properties.

remote sensing. These plots do not show any lognormality
which is perhaps surprising given other size distributions
[20,23] and when the right tail is excluded from the data,
the linearity is even more apparent. In fact what we have
done in fitting power laws to these data is fit the generic
equation to only the top 10 percent of buildings.

The aggregate plots are shown in the thick black line
in Figures 2a to d with the excluded data points in grey.
We have estimated the scaling parameters βA, βL, βH ,
and βV from the appropriate rank-size equations using
log-linear regression but we must note that as volume is a
simple product of area and height Vj = AjHj , then this is
a derived variable that does not have the same status as
the raw data variables area, perimeter and height. In fact
area and perimeter are confounded too as perimeter and
area are both formed from the same two linear dimen-
sions defining the rectangular blocks that make up the
buildings data set. We include volume and area because
these are two variables that are usually used in describing
cities, notwithstanding the fact that they are composed of
more basic geometric primitives. To illustrate the inter-
dependence between these results, if the rank order r, for
height and for area, were identical, that is for A(r) ∼ r−βA

and H(r) ∼ r−βH , then volume could be predicted as
V (r) ∼ r−βAr−βH . This is unlikely to be the case for we
know that height is likely to increase faster than area as
buildings seek space upwards. In short, this is why we need
to examine the allometric relations which relate the var-
ious quantities. Thus we might expect volume to decline
more steeply with rank than area, which in turn is likely
to fall more steeply than height or perimeter for this is
the sequence of objects from 3 to 2 to 1 dimension.

In Table 2, we present the results which also show the
data for the same scaling relations for the land uses. We
have very dramatic linearity in the log-log plots over sev-
eral orders of magnitude for volume from 107 to 102 after
which the plot falls very steeply, implying that buildings
less than 25 square meters in volume behave quite differ-
ently. These are really sheds and bric-a-brac referred to
earlier and in future work will be discounted to an ex-
tent as we construct better building blocks [29]. These
regressions are striking in their linearity and such rank-
size relations are amongst the best we have come across.
In fact this bears out the remarkable linearity of the rank-
size of the heights of the top 200 buildings in the world
which enabled us to make such good predictions of build-
ing heights further down the scale. The rank-size plots
for the nine land use categories – residential, office, re-
tail, services, industrial, educational, hotel, transport, and
general-commercial – are also shown in Figure 2 with re-
spect to area, perimeter, height and volume. We expected
these plots to show rather different scaling from the aggre-
gate (although 90 percent of the buildings in the database
are classified as residential land use) but they are all close
to the aggregate relations. From Figure 2, it is clear that
their linearity tends to be over a lesser number of orders of
magnitude. Any differences that do occur in these slopes
are highlighted in Figure 3 which compares the β coeffi-
cients and their error bars.
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Fig. 2. Normalized rank-order plots. (a) building area, (b) perimeter, (c) height and (d) volume. We plot all buildings
(solid curves in black) and buildings classified by their land use (dashed and dotted curves). We also plot fits to the rank-size
distribution for all buildings (all land uses) on each panel and compute the corresponding regression coefficients applying the
least squares method to the top 10% ranks in each curve. Panel c) includes the rank-order plot of the height for the highest 200
buildings from the Emporis worldwide database.

Table 2. Scaling parameters for buildings in the london database.

all land uses residential office retail services industrial educational commercial

N 3595689 3320579 39587 77075 33949 67270 16257 122874

area βA 0.763 0.559 0.711 0.802 0.664 0.840 0.486 0.711

perimeter βL 0.272 0.251 0.294 0.305 0.308 0.352 0.272 0.287

height βH 0.457 0.352 0.457 0.461 0.469 0.477 0.393 0.432

volume βV 0.861 0.688 0.834 0.923 0.841 1.007 0.570 0.841

Note that only the top 10 percent of these building numbers are used in the regressions and that Transport and Hotel have
been excluded due to their small numbers.
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Fig. 3. Scaling coefficients for the plots in Figure 2. The least
squares method is applied to the top 10% ranks in each curve.
Error bars are 95% confidence intervals. Horizontal dashed
lines (in grey) are mean values of α − 1.

The six sets of allometric relations stated earlier in
equations (10) are plotted in logarithmic form as two-
dimensional surfaces in Figure 4. Only three of these rela-
tionships show the kind of linearity that we might expect
from our earlier analysis, and these involve area v. perime-
ter, volume v. perimeter and volume v. area, that is those
based on Aj = Z2 Lη

j , Vj = Z3 Lμ
j , and Vj = Z6A

ϑ
j .

The other relationships involving height are quite scat-
tered and require different techniques for extracting their
allometry for clearly the set of data points must be culled
to extract those that reflect the densest parts. As there
are almost 3.6 million points in this scatter, their repre-
sentation as surfaces colored by their density after appro-
priate binning into a relatively fine scale set of categories
is the most useful way of assessing these relationships. In
Table 3, we present results from estimating the three allo-
metric regression lines to the data in its logarithmic form.

It is immediately clear that the values of these pa-
rameters are consistent with the order of their geometric
scaling. That is, the parameter of area on perimeter is
less the square while the value of the relation between
volume and area is less than 3/2. This means that as the
perimeter increases, the area increases less than the nor-
mal geometric relation implying that shape is changing,
probably becoming more crennelated – implying a longer
perimeter – as the area grows. In terms of volume, this in-
creases at less than 3/2 of the area which suggests that the
volume must get proportionately less as the area grows.
This bears out the implied observation that as the surface
grows, the shape must change.

Table 3 also contains all the parameter estimates for
these three relationships for each individual land use. Re-
markably these are all consistent with the aggregate and
show that building volumes grow proportionately less than
their increases in area as we might expect. However, it is
even more urgent now to extend the analysis of allometry
to height as this is a key variable in defining volume and
it is the weakest aspect of our work, largely because we
cannot assume that usable building volumes are the same
as geometric volumes. Moreover the height data itself is
highly variable due to the fact that we have used mean
height which is not necessarily a good measure for com-

puting volume. This requires considerable further research
as it is central to some of the notions in this paper which
relate to how volume scales with plot area and to ques-
tions of surface area that define building skins. This is the
research we will develop next when we link the buildings
database to related databases of floorspace and energy
emissions.

6 The spatial distribution of building
geometries

To put space back into the argument, we can examine
the two-dimensional distribution of building geometries
in Greater London by computing the correlation functions
with respect to how properties of a building – area, height
and so on – vary with respect to every other building.
From our previous analysis of the spatial distribution of
population densities with respect to how density varies
around a centre point which invariably declines exponen-
tially with distance from the CBD [3], we might except
that these correlation functions to imply power laws with
respect to increasing distance from any building in ques-
tion. In this section, we will compute a composite correla-
tion function in the following way, assuming that building
properties meet the definitions of a point process.

The first moment of such a point process can be speci-
fied by a single number, the intensity ρ giving the expected
number of points per unit area. The second moment can
be specified by Ripley’s K function [30] where ρK(R) is
the expected number of points within distance R of an
arbitrary point of the pattern. The product density

ρ2(x, y)dA(x)dA(y) = ρ2g(R)dA(x)dA(y) (11)

describes the probability of finding a point in the area
element dA(x) and another point in dA(y), at distance
R = |x − y|, and g(R) is the two-point correlation func-
tion. Ripley’s K function is related to g(R) as

K(R) = 2π

∫

g(R)dR. (12)

In other words, g(R) is the density of K(R) with respect
to the radial measure RdR [31]. The benchmark of com-
plete randomness is the spatial Poisson process, for which
g(R) = 1 and K(R) = πR2, the area of the search region
for the points. Values larger than this indicate clustering
on that distance scale, and smaller values indicate regu-
larity.

The two-point correlation function can be estimated
from N data points x ∈ D inside a sample window W as

g(R) =
|W |

N(N − 1)

∑

x∈D

∑

y∈D

ΦR(x, y)
2πRΔ

ω(x, y), (13)

where 2πRΔ is the area of the annulus centred at x with
radius R and thickness Δ [32]. Here |W | is the area of
the sample window, and the sum is restricted to pairs of
different points x �= y. The function ΦR is symmetric in
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Fig. 4. Two-dimensional surface plots of allometric relations. (a) perimeter against area, (b) perimeter against height, (c)
perimeter against volume, (d) area against height, (e) area against volume and (f) volume against height. Each panel implies
contour lines of logarithmically-binned histograms (frequency counts) on a logarithmic scale. Color bars display the range of
histogram values on each panel. We have found an approximate linear relation between the variables in panels (a), (c) and (e).

its argument and ΦR(x, y) = [R ≤ d(x, y) ≤ R+Δ] where
d(x, y) is the Euclidean distance between the two points
and the condition in brackets equals 1 when true and 0
otherwise. The function ω(x, y) accounts for a bounded
W by weighting points where the annulus intersects the
edges of W . There are a number of edge-corrections avail-
able, but that developed by Ripley [33] has a long tradi-
tion both in human geography and physics [34]. Here we
approximate ω(x, y) = 1 as the city does not have clear
spatial boundaries.

Of special physical interest is whether the two-point
correlation is scale-invariant. A scale-invariant g(R) is an
indicator of a fractal distribution of points, and is ex-
pected in critical phenomena [32]. Figure 5 shows the dis-
tribution of geometric building properties over Greater
London for the largest 100 000 selected by height for a
range of distances up to r ∼= 3.3 km and Figure 6 is
a plot of the two-point correlation function on a dou-
ble logarithmic scale. We observe a power-law decay of
g(R) ∼ r−0.230 ∼ r−γ for these largest 100 000 buildings.
Interestingly, the two-point correlation function does not
display scaling behaviour if we select the 100 000 largest
buildings by perimeter size or area. This suggests that

building height is a major variable which has so far been
overlooked in studies of the fractality of cities and this
supports our preliminary analysis of height from related
databases.

7 Next steps

Our analysis represents a first step in developing scal-
ing and allometry for spatial distributions within cities
and this suggests a research program complementary to
that being developed for equivalent relationships between
cities [14]. The link between the rank-size scaling of spa-
tial attributes which suppresses the spatial pattern and
the scaling of the spatial patterns with respect to dis-
tance which we briefly introduced in terms of two-point
correlation functions, needs to be explored in consider-
ably more depth. We also need to investigate the rela-
tionship between geometric and socio-economic attributes
as reflected in the link between building geometries and
population densities as this serves to link the physical
form of the city to its functioning. Definitional prob-
lems abound when data which is spatial are explored.
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Table 3. Coefficients and correlations for the allometric relations.

area v perimeter volume v perimeter volume v area

allometric allometric allometric
r-square r-square r-square

coefficient coefficient coefficient

Euclidean
2 3 3/2

scaling

all land 1.832 2.386 1.296
0.962 0.811 0.835

uses (1.832, 1.833) (2.385, 2.387) (1.296, 1.297)

1.846 2.463 1.325
residential 0.963 0.825 0.845

(1.846, 1.846) (2.461, 2.464) (1.324, 1.326)

1.783 2.152 1.199
office 0.952 0.808 0.838

(1.779, 1.787) (2.141, 2.162) (1.194, 1.204)

1.811 2.215 1.216
retail 0.958 0.816 0.842

(1.808, 1.814) (2.207, 2.222) (1.212, 1.219)

1.773 2.129 1.195
services 0.964 0.814 0.836

(1.769, 1.777) (2.118, 2.140) (1.189, 1.200)

1.788 2.052 1.148
industrial 0.957 0.706 0.738

(1.786, 1.792) (2.042, 2.062) (1.142, 1.153)

1.679 1.901 1.132
educational 0.959 0.828 0.862

(1.673, 1.684) (1.888, 1.914) (1.125, 1.139)

1.770 2.143 1.207
hotel 0.969 0.849 0.870

(1.760, 1.780) (2.115, 2.172) (1.193, 1.222)

1.775 1.991 1.116
transport 0.948 0.797 0.833

(1.749, 1.801) (1.928, 2.053) (1.085, 1.147)

general 1.813 2.179 1.194
0.956 0.813 0.840

commercial (1.811, 1.815) (2.173, 2.185) (1.191, 1.197)

The numbers in brackets in the coefficient columns give the 95% confidence intervals.

 )(b )(a

 )(d )(c

Fig. 5. Spatial distribution of the geometric properties of the highest 100 000 buildings. (a) area (b) perimeter (c) height, and
(d) volume.
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Fig. 6. Two-point correlation functions of the building geome-
tries with respect to distance R.

Data based on individual objects such as people frequently
does not display spatial pattern until it is aggregated. Al-
though attributes such as income do accord to scaling at
the level of individuals, many others are only retrieved
when the data is aggregated to some specific level and thus
the degree to which it is aggregated is critical. We need to
revisit these definitional issues in more detail and in the
case the database used here, iron out many of the prob-
lems of building size and type that we have identified. The
analysis should be extended to deal with different rank-
size and allometric relations in different areas of the city,
showing how these relations might change as implied in
the distributions pictured, for example, in Figure 6.

We are much encouraged by the very strong scaling
implicit in this data. Of course to confirm this, we need
more examples from other cities. We need to relate the
physical geometry to other measures, particularly linear
measures such as utilities and street systems as well as
socio-economic activity volumes as proposed by Kuhnert,
Helbing, and West [8] amongst others. We need to link
the analysis much more strongly to fractal geometry [35]
and we need to link it to circulation patterns in build-
ings [5,6]. We will examine the surface areas of buildings
linking these to energy emissions and related phenomena
and when we do this, the variations in these relations with
respect to different locations and districts within the city
will take on new meaning. In time, we hope that such work
will add to our growing knowledge of how efficient cities
are in terms of their geometry and in this sense, provide
a much more considered position on issues such as urban
sprawl and the compact city.

8 Summary

In summary, we define and fit power laws and allometric
scaling relations to four geometrical properties of build-

ings – perimeter and area of each building, plot, height
and volume – for a large database of buildings in Greater
London. We begin by defining how power laws approxi-
mate the underlying distributions which arise from com-
petition for sites, and then we examine heights for the top
200 buildings world wide and for buildings in three world
cities, New York, Tokyo and London. We then develop this
analysis for the London data and demonstrate strong scal-
ing in terms of rank-size and significant scaling distortions
with respect to allometric relations between area, perime-
ter, height and volume. We conclude with suggesting that
once we reintroduce space into these distributions using
two-point correlations that the height distribution scales
spatially with distance. This sets the agenda for further
research.

This research was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC under grant
EP/C513703/1 and by the UK National Centre for e-Social
Science in the GeoVUE Project (ESRC under grant RES-149-
25-1023).
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