
1 Introduction: the problem
Space syntax provides a method for partitioning a spatial system into relatively indepen-
dent but connected subspaces so that the importance of these subspaces can be measured
in terms of their relative nearness or accessibility (Hillier and Hanson, 1984). It is similar to
a wide class of models for measuring spatial interaction, developed over the last fifty years
as part of social physics, which derive relative accessibility from the underlying graph-
theoretic structure of relations, usually based on the Euclidean distances between small
areas (Wilson, 1998). It differs from this class, however, in three significant ways. First,
the subspaces or small areas which compose the basic representational elements in
space syntax are ill defined. The spatial elements used are not directly observable and
measurable and, although they depend upon the geometric properties of the space,
there is no agreed or unique method for their definition. Second, spaces are not
collapsed to nodes or points but are first defined by lines which are then considered
as nodes. Third, the relations between these components or nodes are defined in terms
of their topology and, although Euclidean distance is implicit, relations are measured
in binary termsöwhether they exist or not.

In this paper we will focus entirely on the first problem which involves defining the
spatial components used in subsequent relational analysis. We will introduce methods
which resolve the problem of deriving a unique set of elements, thus enabling their
automatic definition. These methods extend quite naturally to the second and third
problems in that representing lines as nodes is no longer necessary. The method we
introduce suggests that the relative importance of lines associated with subspaces is
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often an approximate function of their length. In short, we introduce a method which
collapses all three stages into one, although it is still possible to use the elements we
generate to conduct conventional space syntax analysis thereafter. In later papers
we will address the second and third problems, although the work we embark upon
here implies the need for a much more fundamental theory of morphology. It is this,
we argue, that should constitute the long-term agenda for space syntax.

Space syntax begins with an exhaustive decomposition of the space into mutually
exclusive subspaces which are assumed to be convex. In the original formulation,
various standard graph-theoretic relations based on the adjacency of these subspaces
were proposed, but methods based on such adjacencies have hardly been developed at
all. Instead, what is usually done is to link these subspaces using straight lines or axes
which intersect with one another to provide a system of `axial lines' which is called an
`axial map'. This is an approximation to the convex geometry of the system, but with
only a loose connection between axiality and convexity. Subsequent analysis simply
takes these axial lines; as nodes of a graph, with their intersections constituting
relations between these nodes, and derives standard distance measures which, when
summed at each node, provide measures of accessibility for any line to all others. The
focus on axiality implies that direction and orientation are important to the analysis
and this has implications for the use of this kind of analysis in studying movement.
More recent work has introduced the concept of the `viewpoint' associated with each
axial line; in some interpretations, axial lines are associated with lines of sight, or at
least lines of unobstructed movement through the space. These latter developments do
not map easily onto the basic defintion of lines as measures for summarizing space,
but they have propelled the analysis towards associating axial lines with transport and
traffic. In traditional analysis the nodes in graphs based on relationships between
elements in a map are associated with densities, intensities, and potential development
at point locations, but in the case of space syntax these same nodes imply movements
over a line, which reveals a more complicated definition of density.

Two issues make space syntax controversial. First, although there is some guidance
as to how axial lines might be generated, much is left to the user's intuition and graphic
dexterity. Thus there is always the suspicion that each example cannot be replicated by a
different user in a different time at a different place. Desyllas and Duxbury (2001,
page 27.6) make the point when they say: `̀ the ... axial map cannot provide researchers
with reliable and comparable results.'' Peponis et al (1998, page 560) argue that objec-
tivity in the process of generating axial lines can only arise `̀ from the rigor and
repeatability of the procedures used to generate them.'' Second, the twist that is occa-
sioned by treating lines as nodes is counter to the way social physics and transportation
analysis have developed, where density and volume of movement are intrinsically
associated with point locations, not geometrically artificial lines defined by users where
length (and hence cost and travel time) is ignored. Many of these problems arise from the
fact that methods and measures for implementing the theory have not been well
formulated. In fact, from the variety of publications over the last two decades it is clear
that multiple space syntaxes exist and that there is no standard way of engaging in this
analysis. What we will do in our paper is to lay bare the assumptions and, in doing so,
propose procedures for generating axial lines and axial maps which lead to unique and
reproducible results. The appropriateness of our methods must be judged on the
assumptions made in adopting a particular procedure in the first place. This is what
the theory and its methods currently lack. We believe that, by introducing automatic
methods, space syntax has a chance to relate to more mainstream ideas in morphology
and social physics, thus widening its appeal to disciplines beyond architecture.
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We will begin by discussing the key problems of partitioning a spatial system into
convex subspaces and describing this by axial lines. It has been known for a long time
that there is no formal procedure for generating a unique partition of a two-dimen-
sional space into convex polygons (O'Rourke, 1987). We will also address the ways in
which axial lines relate to convexity, clarifying how and why it is necessary to consider
viewpoints or centroids which link areas to lines. We then state the essence of our
argument which is based on unambiguously specifying the conditions that an axial line
must meet, and then deriving a procedure for ordering and sorting the axial lines in
terms of their relative importance.What this shows is that there may be many different
conditions which specify the line and many different kinds of ordering which generate
their relative importance to one another. Our method, in fact, is based on defining
viewsheds, called isovists, and generating different axial lines from different properties
of these viewsheds. This implies different kinds of syntax. Although we first hone our
ideas on the basic `T-shape' used in many previous papers, we illustrate these ideas
with the original example used by Hillier and Hanson (1984) of the small French town
of Gassin. This immediately reveals that our methods generate different results from
those which were originally derived manually and intuitively. We then illustrate how
changes in scale or resolution affect the number and form of these isovists (and hence
axial lines), indicating how important is the representation of the space in raster/vector
terms in establishing a degree of invariance for this style of analysis. We conclude by
anticipating further research which we have underway and how this might lead to
generic theories of urban morphology. Ways in which we have automated these proce-
dures based on the well-known desktop geographic information system (GIS) ArcView
are available at http://www.casa.ucl.ac.uk/sanjay/software isovistanalyst.htm.

2 Defining space: convex partitions, axial lines, and isovists
2.1 Generating convex spaces
Although most applications of space syntax have emphasized how the areas constituting
rooms in buildings and street systems between urban parcels can be simplified by using
axial linesölines of unobstructured movementöthe theory as developed by Hillier
and Hanson (1984) defines two complementary approaches to spatial definition: con-
vexity which emphasizes the two-dimensional features of the system and axiality which
emphasizes the one-dimensional. We will begin by briefly summarizing these and then
turn to a more recent development in the theory which incorporates ideas concerning
viewpoints, viewsheds, or isovists as defined by Benedikt (1979).

Hillier and Hanson (1984) argue that the partition of space should meet an implicit
condition of enclosure that they assume is met by geometrically convex subspaces. They
define a convex map as: `̀ the least set of fattest spaces that covers the system'' (page 92),
and they continue by suggesting an algorithm for manually constructing such a convex
map: `̀ Simply find the largest convex space and draw it in, then the next largest, and so
on until all the space is accounted for'' (page 98). However, given the continuity of
space, such partitioning is not well defined. Even if there is a minimum number
of subspaces which are convex, these cannot be found and, in any case, the criterion
for what is a `fat' convex space is never defined. In fact, although space syntax has
largely ignored these formal considerations of convexity in practical applications, some
progress has been made in defining what Peponis et al (1997) call `̀ informationally
stable spaces'' which do meet conditions of convexity. They demonstrate that there is no
partition which gives a minimum number of subspaces whose convexity is unique as we
illustrate in figure 1(a) (over). But they suggest that it is possible to generate a larger
number of convex spaces which they call an s-partition. This partition is made at points
of discontinuity which define the edges or faces of the space where there is a change in
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the number of surfaces which come into view as the partition is crossed.We show this in
figure 1(b). They then extend this criterion by defining e-partitions (of which the
s-partition is a subset)ölines between vertices defining the faces or edges of the form
in which other faces or edges gradually or immediately become visible as the lines are
crossed. These are extendible diagonals and we show such e-partitions and their e-spaces
in figure 1(c). Details of the actual procedure for their definition are given in the
Spatialist software used to generate these and in papers by Peponis et al (1997; 1998).
The advantage of these types of decomposition is that they are unique and informa-
tionally stable in the sense that they reflect significant visual (geometric) thresholds
which can then be subjected to standard relational analysis.

2.2 Generating axial lines and axial maps
The dominant approach in space syntax involves representing these convex polygons
(or their approximation) by using straight lines which imply unobstructured movement
between spaces. The usual approach in spatial analysis, however, is to approximate
subspaces by points or centroids and then to conduct analysis on networks of relations
between these points. In contrast, space syntax defines aggregations of subareas by
lines, and it is the procedure for doing this that is the most controversial aspect of the
analysis. Hillier and Hanson (1984) define an axial map as: `̀ the least set of such
straight lines which passes through each convex space and makes all axial links''
(page 92), and they define the procedure for doing this in analogy to that for the
convex map by: `̀ first finding the longest straight line that can be drawn ..., then
the second longest, and so on until all convex spaces are crossed and all axial lines
that can be linked to other axial lines without repetition are so linked'' (page 99). There
are many problems with this procedure, not least the fact that, once convex spaces are
c̀overed' or crossed by axial lines, the aggregate of the space crossed is no longer
convex; otherwise it would have been defined as such in the first instance. A second
problem relates to the fact that, for spaces to be related, axial lines must intersect and
this means the axial map must be strongly connected. All subspaces might be crossed
without the axial map being connected in this way. So to avoid such problems, an
(arbitrary) criterion of making each axial line link to at least one other is imposed.
Because a unique set of least, fattest convex spaces cannot be defined, it is thus
impossible to automate the construction of an axial map. As the procedure is left to

(a) (b)

(c) (d)

(e) (f)

Figure 1. Convex sets, partitions, and axial lines for the basic T-shape.
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the user, the biggest problem is controlling for the number of axial lines as this is
central to the accessibility values which are subsequently computed and used to index
the importance of each line. In figure 1(d) we present intuitively derived axial maps
which cover the s-spaces in figure 1(b), where it is clear that the second map might be
said to cover the space `less comprehensively' than the first, although the first has
slightly `longer lines'. It is problems such as this that we seek to address in this paper.

The all-line axial map, first defined and thence published by Penn et al (1997) but
used extensively by Hillier (1996) in his second book, consists of all possible lines that
link vertices defining differences in orientation between faces as well as all extensions
of faces to meet other faces. There is an added constraint that such lines must pass
freely through space which is unobstructed. Peponis et al (1998) present three different
methods. These all begin with the all-lines map illustrated in figure 1(e) and in each
case, they reduce the number of lines in this map while meeting different criteria for
covering the convex spaces. One of these methods is particularly straightforward, being
based on ranking the number of diagonals in the all-lines map with respect to the
number of s-partitions that each diagonal crosses. The diagonal with most crossing
points becomes the first axial line. This and the associated s-partitions are then
removed, the remaining diagonals reranked, the largest chosen, the set of diagonals
and s-partitions reduced further, and so on until all partitions have been crossed. This
method leads to the axial map in figure 1(f) which is closer to but still somewhat
different from the first map in figure 1(d). These methods show promise but, as they
depend on the vertex geometry of the original plan or layout, they remain restrictive in
terms of where lines can be drawn.

2.3 Viewsheds: isovists and isovist fields
The third approach which has emerged in the last decade is rather different, although
there are important antecedents reflected in the work of the Hillier and Peponis
groups. This approach depends not on simplifying morphology as a map which covers
a subdivision into convex spaces but on describing the morphology in terms of
individual points which in themselves cover areas of the space. The shift is thus from
area to point analysis, although still in terms of describing the morphology of these
points by lines which cover space as sources for lines of unobstructed movement or
lines of sight. How far one can see or move thus becomes the key criterion for defini-
tion. The object which defines this approach is the viewshed, visual field, or isovist
constructed around a given point in the space, with its generalization to an isovist field
which describes what is contained within each viewshed or isovist at every point in the
space. It is possible to approximate everything contained in the space if the viewpoints
are chosen regularly at a sufficiently fine level of resolution. Isovists might be defined
for any of a very wide number of measures: for example, distance, area, or perimeter
seen from a point, or measures related to these, as well as any other objects within
the viewshed. How far or how much one can see or access in an unobstructed way is the
usual measure, but the idea is easily generalized for capturing a very wide variety of
features and objects which fall within a specific viewshed. Although space syntax did not
originally embrace the idea of an explicit viewpoint or viewshed, in one sense it is deeply
embedded in the theory. All the relational analysis between convex spaces and axial lines
from which the importance of these spaces or lines is derived is based on the notion that
what is important is the number of different things that might be seen or accessed from a
particular space or line, not the actual distance to these different things. In fact, much of
the research just summarized on s-partitions and e-partitions as well as on the all-line
map is predicated on the notion that points and lines where viewsheds significantly
change are key elements in simplifying the space.
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Viewshed analysis has been widely developed in landscape studies and is integral to
GIS (Rana, 2002), but there has been very little research on its application to urban
areas, with one or two notable exceptions. Benedikt (1979), in a pioneering paper on
urban viewsheds, adopted the term isovist fromTandy (1967) who had used it to describe
views in landscapes. Until quite recently, Benedikt's ideas were developed in a somewhat
ad hoc way by the space syntax community, with the clearest statements in Hillier's
(1996) book, and in the Spatialist software developed by the Peponis group. Recently
Batty (2001), Dalton and Dalton (2001), Ratti (2002), and Turner et al (2001) have all
suggested that isovist fields represent an alternative way of simplifying urban and
building morphologies by using ideas from visibility graphs, agent-based modeling,
ray tracing, and image analysis. Software such as Depthmap from Turner (2001),
OmniVista from Dalton and Dalton (2001), and Fathom from Intelligent Space
(2002) have appeared which make the generation of isovist fields automatic. There is
a strong implication that the isovist field idea is preferable to the definition of axial
maps because of its inherently well-defined nature and consistent replicability. Desyllas
and Duxbury (2001) go further and suggest that isovist field statistics represent more
appropriate ways of measuring accessibility in urban areas than axial maps because
isovist fields provide better correlations with observed movements and the problem of
averaging observed density volumes along a line is avoided (Turner and Penn, 1999).

The advantage of thinking about space in terms of isovists and isovist fields is that, for
a sufficiently fine level of resolution, there is a complete description of how far one can see
or move from every point in the space. Moreover, each viewpoint is associated with a
spaceöthe viewshedöwhich can be approximated by a line which spans the space,
somewhat like a diameter. The major difference from space syntax is that isovists are
not in general convex spaces although it is possible to define a convex core to each (Hillier,
1996). Although the rest of this paper will be concerned with extracting axial lines from
isovists, we must anticipate these to show how they compare with those already described.
One method is: first find the isovist with the longest diameter, select this as the first axial
line, and reduce the space to be considered next by subtracting the isovist associated with
this first line. Then find a viewpoint in the remaining space which generates the next
longest line, select this, and reduce the space further by subtracting that isovist from the
active space. Continue in this manner until all the space has been covered. The set of
lines extracted will constitute the axial map. These may not always be connected, but
their isovists will be, because all the space has been systematically tessellated into
dominant isovists whose contiguity ensures an exhaustive partition of the space.

In this context, it is the isovist itself which is used to capture information about the
space, and its diameter is used only to approximate its span. If we use the isovist to
capture activity of varying density, then the lines which are selected and their order
need not follow the rule of selection from longest to shortest. Thus length need not
be the sole criterion for spatial ordering. In one sense, what this method does is to side
step the convexity problem by arguing that what is contained within the isovist must be
used to order space. If this is defined to be the size of the convex core of the isovist, then
this would orient the problem back towards traditional space syntax. In figures 2(a) to
2(d) we define four isovists for key corner points in our T-shape. If we then use the basic
criterion that the longest straight line in each isovist is to be used to order the space, it is
clear that there are multiple isovists lying along the left-hand corners of the Twhich all
generate the same longest line.If we reduce the space by the isovists associated with
this line, then the isovists associated with the right-hand corners of the T generate a
similar line on the right-hand side. It is intuitively obvious that the resultant V shape
within which the T sits defines two axial lines for isovists which cover all the space. Thus
the solution produced using this method which is shown in figure 2(e) has similarities
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with one of those already generated using more conventional analysis. There are many
differences but, before we develop the method further, we must briefly explain what
happens next in terms of space syntax, once an axial map has been produced.

2.4 Relational analysis of convex spaces and axial lines
Most of the effort in space syntax has not been in generating axial lines or maps but
in deriving and interpreting relationships between the lines that constitute such maps
through the number of changes of direction or the number of paths between lines
defining the spaces which constitute the system. In essence, relations between convex
spaces can be measured in terms of whether or not common adjacencies exist, or
between axial lines in terms of whether or not intersections with other lines exist. If
we call the spaces or lines i and j (i, j � 1, 2, .::, N ) and the number of adjacencies or
intersections k and l (k, l � 1, 2, .::, M ), the matrix A � [Aik ] defines the existence
Aik � 1 (or not, Aik � 0) of adjacencies and intersections k that are associated with
spaces or lines i. The matrix of relations between pairs of spaces or pairs of lines is
computed as Rij �

P
k AikAjk or R � AAT, from which we define the binary matrix L

as Lij � 1 if Rij > 0 (i 6� j ), or Lij � 0 otherwise. From the graph implied by
this symmetric matrix, all relations are derived as functions of shortest paths. The
number of paths of length t� 1 from i to j is defined from the recurrence
Lt�1

ij � Pl L
1
il L

t
lj (t � 1, 2, .::, N ) with the shortest path between i and j given by the

matrix Dij � t� 1 if Lt�1
ij > 0 and Lt

ij � 0 (t � 1, 2, .::, N ).
From the shortest path matrix, distances associated with each node (space or line)

are computed as sums of indegrees or outdegrees. That is, a typical total distance (or
depth) for a line i is computed as Di �

P
j Dij which is also proportional to the

accessibility or integration of the line. In fact, integration is usually taken as the inverse
Dÿ1i and it is these values that are compared with densities or volumes of movement
associated with the axial lines. Although most applications of space syntax begin after
these integration values have been defined, there are many issues to be clarified
concerning the appropriateness of this relational analysis. For example, it is well
known that, for any system of relations defined on two sets, there are always dual

(a) (b) (c) (d)

(e)

(f)

Figure 2. Key isovists and related axial lines for the basic T-shape.
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problems which consist in interpreting relations between one set of elements through
the other and vice versa (Batty and Tinkler, 1979). In this case, there is a dual problem
where the matrix of relations is computed from R̂ � ATA. In the case of axial maps,
the relations would generate accessibilities for the points of intersection, not for the
lines themselves. In fact, in early studies of urban morphology, Atkin (1974) developed
an approach called Q-analysis which sought to examine urban structure in terms of
these duals (Atkin, 1974). Such extensions open up an entirely new domain of research
in space syntax which we will explore in a later paper, but, for now, we will refocus our
interest on the extraction of axial lines from isovists and axial maps from isovist fields.

3 Axial lines from isovists and isovist fields
3.1 Definitions, properties, and measures
An isovist is defined as the space which can be directly accessed from a specific
viewpoint. This might be the space which can be seen by an observer and is often
taken (as it is here) as the entire space viewed when the observer moves through 3608
or 2p radians. But it might also be the space through which an observer can transport
himself or herself without geometric obstruction. In space syntax most applications
have been restricted to architectural and urban systems at scales where lines of sight
are important although, in principle, these ideas can also apply to morphologies where
sight and vision are not relevant. The focus on scales where vision is relevant, however,
is significant because considerable work in space syntax appeals to what and how far
one can see as being instrumental in the molding of the urban fabric. With this in
mind, an isovist is a nonconvex space arrayed around a viewpoint i which we illustrate
for a small urban streetscape in figure 3(a) (the viewpoint is indicated by a dot). The
space is a polygon which in digital applications is approximated by a raster whose
points are also illustrated in figure 3(a). The grid points in this raster are typically other

(a)

(b)

Figure 3. Isovist resolution and maximum diametric length.
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viewpoints for which isovists can also be defined; measures of the shape or what is
contained within each isovist are then used to define various isovist fields which are in
themselves measures of the morphology of the entire space.

Although our central concern is not with computational issues per se, the question of
the scale of resolution used to define isovists is important. As figure 3(a) reveals, the
viewpoints are approximated by a raster and the isovist is defined by relating the raster
points within the isovist to the viewpoint. Three variants have been used and all these
involve tracing rays in circular rotation around the viewpoint and measuring the inter-
section of these rays with the raster points. The method in the ArcView GIS variant used
for the public domain code developed here by Rana (see http://www.casa.ucl.ac.uk/sanjay/
software isovistanalyst.htm) uses rays but then defines polygons from intersections of the
rays with building outlines. A second method used here for the trials in the next section,
developed by Batty (2001) using agent-based technology, involves moving agents along rays,
measuring properties of the isovist as they travel. This method developed in StarlogoT
is by far the fastest of any to date being implemented on a pseudo-parallel processor. The
third method, developed by Turner (2001), uses the grid points as nodes in a graph which
spans the entire space and enables rapid measures of neighborhood and convexity to
be calculated in software called Depthmap. The ray and agent tracing is indicated in
figure 3(b), where the rays shown also illustrate all the graph links for the node in question.

There are many geometric measures which can be computed for any isovist which
when developed for an entire field of viewpoints, constitute isovist fields. There are
one-dimensional measures based on distance and two-dimensional measures based on
area and orientation and several measures derived from this geometry can be defined
to indicate degrees of compactness, convexity, and circularity. Measures where the
isovist is used as a container to collect information about other characteristics of
the environment can also be defined, although these depend upon specific associations
with activities such as population and other densities. In fact, one of the limitations of
space syntax has been an absence in using its spatial aggregations to capture anything
other than geometric characteristics and movement. Once such measures have been
defined, however, various moments (in particular, means and variances) can be calcu-
lated for individual isovists where measures such as distance vary with the isovist
and/or across viewpoints which measure variations in the isovist field. For a typical
system defined by n viewpoints, we will index a specific viewpoint in the range i,
j � 1, 2, .::, n. The viewpoints j ( j � 1, 2, .::, ni ) within an isovist located at viewpoint
i are defined by the neighborhood Oi which consists of ni viewpoint cells. The basic
measures are thus distance, dij , from the core viewpoint i to j and the orientation of the
ray associated with this distance, which is yij .

The key measure in extracting axial lines as approximations to isovists is based on
the diametric length, defined as Di� jk� � (dij � dik ), where jyij ÿ yik j � p and j 6� k. The
relevant values of this measure are its minimum and maximum, given as

Dmin
i � min

jk
fdij � dikg,

Dmax
i � max

jk
fdij � dikg, where jyij ÿ yik j � p, and j 6� k . (1)

Hereafter we refer to the maximum diametric length, Dmax
i , as the d̀iameter' of the isovist

which we show by the dotted line in figure 3(b). This defines the longest straight line
across the isovist, which can be thought of as a maximal spanning distance. Other key
measures are the minimum distance and the maximum distance, defined, respectively, as

dmin
i � min

j
fdijg, dmax

i � max
j
fdijg , (2)
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with their mean and variance as

�di �
X
j2Oi

dij
ni

, s 2�di � �
�X

j2Oi

�
dij ÿ �di

ni

�2 �1=2
. (3)

Means and variances of the diametric lengths are not stated as we will not use them in
the subsequent analysis although they are computed by the GIS extension to ArcView.
A related space exploited by Hillier (1996) associated with any isovist is its convex core
and here we note that the minimal convex core is the circle traced out by computing
the coordinates around the viewpoint i from p(dmin

i )2. We show this core as the larger
circle based on the viewpoint at the smaller circle in figure 3(a).

When we compare distances we move the observer m times, incrementing the arc each
time by y � 2p=m radians. The means and variances of these angles are not meaningful,
but we can compute a mean distance weighted by its orientations and its variance as

d�y�i �

X
j2Oi

yij dijX
j2Oi

dij
, s 2�d�y�i � �

X
j2Oi

�yij dij ÿ yi �2X
j2Oi

dij

2664
3775

1=2

. (4)

Area and perimeter computations are straightforward although this requires the end
points of each ray to be ordered around the circle of revolution where j � 1 is
associated with y, j � 2 with 2y, and so on. Defining the radial distance for each
ray as ril , the area and perimeter are given, respectively, as

ai �
1

2
sin y

X
l2Oi

r 2il , pi �
Xm
l � 1

��ril�1 sin y�2 � �ril ÿ ril�1 cos y�2 �1=2 . (5)

There are several derived statistics useful for measuring the difference between
actual and ideal geometric shapes. We define three which all have values of 0 for a
straight-line shape and 1 for a circle: compactness, Gi , the ratio of average to maximum
radial distance; convexity, Ci , the ratio of idealized circular to perimeter radius; and
circularity, Yi , the ratio between actual and idealized circular area. A fourth, centrality,
Fi , is a measure of drift or displacement between the centroid of the isovist fxi , yi g
and its end viewpoints fxj , yjg. These measures are defined, respectively, as

Gi �
�di

dmax
i

, Ci �
�
ai
p

�1=2��
pi
2p

�
, Yi �

ai

p�d 2
i

,

Fi �

X
j2Oi

xj

ni
ÿ xi

0BB@
1CCA

2

�

X
j2Oi

yj

ni
ÿ yi

0BB@
1CCA

22664
3775

1=2

9>>>>>>>>=>>>>>>>>;
. (6)

All these measures in equations (1) ^ (6) can be generalized to form different isovist
fields and various moments can be computed for subsequent statistical analysis.
Isovist fields also have important surface properties which can be exploited to
identify various visual thresholds as can be seen in the subsequent examples in this
paper as well as in previous published work (Batty, 2001; Turner et al, 2001). These
properties have been exploited in landscape analysis (Llobera, 1996; Rana and
Morley, 2002), but in this paper we will simply note these and their relationship to
mainstream image and pattern analysis. Indeed, there are alternative approaches
which suggest that there are many other kinds of axial geometry that might be
used to summarize viewsheds. For example, the medial axial transform has been
widely exploited in the analysis of shape within biology, and properties of the isovist
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surfaces themselves with respect to their slope and shape can be used to simplify the
structures of the fields that they define (Blum and Nagel, 1978; Ratti, 2002). In a
related paper, Carvalho and Batty (2003) explore one such extension.

3.2 Algorithms for generating axial lines
We consider that the axial line associated with an isovist is the maximum diametric
length Dmax

i defined in equation (1). As we have already noted in discussion of axial
lines from isovists for the T-shape in figure 2, this diameter is not associated with a
single isovist, for there are an infinity of points along its length from which an
appropriate isovist can be generated. As axial lines are used to approximate areas, it
is always necessary to select such a line with respect to some areal or other indepen-
dent measure of an isovist. There must be some way of selecting a unique viewpoint
(and hence a unique isovist) and, in this way, the chosen diameter becomes a line
uniquely associated with a particular isovist. This is very much in the spirit of space
syntax, for axial lines are always associated with spaces which they are designed to link
and span. Thus their definition from isovist spaces must always relate what is in the
spaceöits area or some other measureöto the way it is approximated by a line.
Therefore, the infinity of points on such a line is never at issue and, if there are ties
to be broken, this must be accomplished with respect to some other isovist measure.

There are two variants of the general procedure. The first is based on selecting a
longest line and then selecting a point on the line which is associated with an isovist (for
which this line is longest) but breaking the tie with other points according to some other
measure for which that isovist is maximal. The second method consists selecting the
viewpoint of an isovist for which a measure is maximal and then generating its longest
line. The first method focuses on longest lines and chooses where they are rooted in
viewpoints according to area. The second chooses the largest area, say, and then
generates an appropriate line. The first method gives precedence to longest lines, the
second to largest areas and then generates the line. Both are part of a generic algorithm
which we describe as follows. The algorithm, which we illustrate in figure 4, works by

Start

(Re)set search space

Select isovist with
optimum value

Has only one
viewpoint been
selected?

Reduce number of
isovists by breaking
ties, optimising
new feature

Is there any
space left to
search?

Reduce search space
by subtracting isovist's
area from remaining
space

Approximate space
by maximum diametric
lengthÐaxial line

yes

no

yes

no

Figure 4. Generic algorithm for sorting isovists and generating axial maps.
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selecting some attribute or measure of the isovist which is to be optimized. It begins
by selecting the isovist which meets this criterion of optimality and assumes that the
space taken by this isovist is dominant. It selects the axial lineöthe maximum
diametric lengthöassociated with this isovist. The next isovist chosen cannot be rooted
within the isovist already chosen because that isovist dominates. To make sure that this
cannot happen, the space available for searching for the next isovist is reduced by
subtracting the first isovist for the entire space. A second isovist which meets the
criterion for optimality is then chosen in the reduced space, its axial line selected,
and the space further reduced. This process continues until all the space has been
covered by isovist selection. At that point, the axial map that has been generated is
simply the dominance ranking of the isovists.

The first method, which starts with the longest lines, is essentially one where the
length of line is being optimized. The longest line is chosen and any ties (of which there
are many) for isovists associated with this longest line are broken using some other
criterion such as largest area. In this way, lines of smaller and smaller length but as
long as possible are generated. The second method starts with the isovist associated
with the largest area. If there are ties, then these might be broken using the longest line
or some other criterion. What this method generates are isovists with smaller and
smaller areas.We illustrate the axial lines generated for the T-shape in figure 2(f ) where
we begin with the isovists covering the largest areas around the T and proceed in the
manner just outlined, reducing the space each time. In essence, this method is not
dissimilar from that suggested by Hillier and Hanson (1984) for manual definition of
axial lines and convex spaces. It is a very strict ranking of lines or spaces where a
larger space or longer line completely dominates the selection of the next space or line.
In this sense, dominance is a local criterion and the heuristic is locally optimal. Space
syntax has never sought to define or aspire to definitions based on global optima, for
this would involve stating exactly what such optima would entail. This would require
setting the problem up as selecting spaces and lines which were as `fat' and as long as
possible, respectively, with as small a number of spaces and lines as possible. This
would require a definition of `fat' which might be possible from the above measures
such as compactness and/or convexity. It would also require formal optimization
techniques which take the argument beyond the scope of this paper, but what space
syntax requires are techniques to at least explore such optimization. These must await
better definitions and explorations in the spirit of the current paper.

There are many issues which arise from this discussion. First, the algorithm does
not guarantee that all axial lines will be connected. The isovist spaces selected (and
hence the viewpoints) are of course connected, but the straight lines which approx-
imate these may not be. It would be perfectly possible to construct a graph of relations
between the chosen isovist spaces and to use this for subsequent relational analysis;
this would be strongly connected by definition but it is unlikely that the links would
follow straight lines. In fact, extending isovist analysis in a similar fashion is the basis
of `isovist integration analysis' proposed and implemented by Turner and Penn (1999).
However, there is no reason why the axial map should be strongly connected if it is
simply a summary of spatial orientations. The criterion imposed by Hillier and Hanson
(1984) that the map be connected is an arbitrary one. It comes from wanting to imply
directional, connective properties to the system that is subsequently used for analysis
based on lines of sight which are assumed to be straight.

Second, it is possible to deal with overlapping areas and to deal with isovists which
are tied at optimal values. In the longest line approach we could, for example, generate
all isovists associated with the line, reduce the space accordingly from this mega-isovist,
and continue in this fashion until all the space is covered. This would give rise to axial
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lines which were less dense and less connected than for the case where single isovists are
identified at each pass of the method. In fact, we have implemented this in our
applications to Gassin, and it is of interest to note that this is similar to one of the
methods used by Peponis et al (1998) for generating axial lines which `see everything'
but do not necessarily get everywhere. A third problem relates to the appropriateness of
the line for indicating space. In the ultimate axial map derived by this method, it is quite
possible, indeed usual, to see two long lines almost in parallel spanning a space and
ultimately intersecting. This is caused by one line being associated with the dominant
isovist but that isovist not quite covering a portion of the space that generates its own
axial line. At first sight, it might appear that the two lines are of equal dominance in
that they are similar in length. However, one line is associated with the dominant isovist
and, although the other line may be as long or longer, its isovist is less dominant than
the first and thus has lesser importance in any subsequent analysis. In a sense, to read
axial lines associated with this method, the relative importance of the isovist spaces
must be considered, for there is a strict ranking of lines and spaces according to the
criterion used in their selection.

The last issue here involves the meaning of the dominance ranking of axial lines
and isovist spaces. In the case of the first variant in which isovists are selected
according to the length of their line and then ties are broken according to the area
covered, the ranking is based purely on length of line. In the case of the second more
general variant, length of line is not the criterion as area or some other measure or
attribute of the isovist is used for ranking. Lines are used only to summarize spaces
and, if there is a correlation between the ranking of space and length of line, this is
because area and length or compactness and length, etc, are related. It is easy to find
criteria for selection and ranking which are not likely to be correlated. In fact, in many
applications of space syntax there are very strong correlations between the length of
axial lines and the subsequent accessibility values produced, for the simple reason that
the longer the line the more likely it is to intersect with other lines. This is an issue
that we will touch upon in our examples below but, once again, it represents another
area of inquiry that is beyond the immediate concern of this paper.

3.3 Comparing axial maps: the French town of Gassin
The small town of Gassin was originally used by Hillier and Hanson (1984) to explain
the rudiments of space syntax. It has subsequently been used as a test case by Peponis
et al (1998) as well as by Jiang et al (2000) in an alternative reformulation of the theory.
The example is manageable in that in the original application only 40 axial lines were
defined, linking 139 c̀onvex' spaces. In fact, the published data on the maps of the town
differ enough to make the definition of axial lines and convex spaces ambiguous and
this becomes critical in the methods that we use here which will identify every nook
and cranny in the digital representation as being the potential origin of an isovist, and
hence axial line. Nevertheless, the map that we have taken is sufficiently recognizable
and intuitively appreciable as to make this a good test example.

We show the original plan, the convex spaces, and the axial map defined manually
and intuitively by Hillier and Hanson (1984) in figures 5(a), (b), and (c) (over), respec-
tively, in comparison with our own scanned map at the resolution used in the StarlogoT
software in figure 5(d). All the subsequent measures in this section are based on this
map which has dimensions of 196� 108 pixels in the x ^ y directions, with the space
associated with the streetscape between the buildings being 8129 (square) pixels in area.
The longest diagonal in this plan is some 214 units of distance and this provides a
benchmark to all subsequent calculations and results reported here. All distance and
area measures are rounded to integers and ratios and related statistics are given to three
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decimal places. In the analysis that follows, we will also measure different areas of the
isovists associated with axial lines so that we can make comparisons between different
variants of our own algorithm. Unfortunately it is not possible to associate axial lines in
the original example with the convex spaces that they summarize as there is no unique
mapping from lines to spaces and thus all comparisons between the results generated
here, the original, and the examples developed by Peponis et al (1998) will solely be in
terms of numbers and lengths of axial lines.

We will first generate a series of isovist fields for Gassin by using agent-based
methods which walk an agent to all points in the viewshed associated with a given
viewpoint. This method generates isovists and isovist fields which are then used to
associate different geometric and related measures of properties of viewsheds at each
point in the space (Batty, 2001; Batty and Jiang, 2000). Agents walk 1808 in increments
of 18 forwards and backwards from each viewpoint, measuring a series of geometric
characteristics from which the set of relevant measures identified earlier in equations
(1) ^ (6) are thence computed. The program for Gassin currently takes about 21 minutes
on a MacIntosh i-Book (with PowerPC G3 processor running at 366 MHz). In the
analysis we use nine measures, four of which involve the distances dmin

i , dmax
i , �di , and

Dmax
i , the area and perimeter measures ai and pi , and three of the ratio measuresö

compactness, convexity, and circularity, Gi , Ci , and Yi . We have not used the minimum
diametric length or the drift parameter, nor all the means and variances shown earlier,
as there is a surfeit of possibilities which all need to be explored in another context. In
our ArcView software, a full set of measures is computed (see http://www.casa.ucl.ac.uk/
sanjay/software isovistanalyst.htm).

The first stage in generating axial lines is to compute the various isovist fields
which are then used for ordering the spaces for which axial lines are used as a
summary. The nine fields based on each given measure are shown in figure 6 where
the mean and standard deviation of each measure are also shown to provide some
comparative basis for the statistics used below. The minimum distance field is the

(a) (b)

(c) (d)

Figure 5. Basic data for the town of Gassin: (a) building blocks and street parcels; (b) partition
into convex sets; (c) the original axial map; (d) the digitized map.

628 M Batty, S Rana

http://www.casa.ucl.ac.uk/sanjay/software_isovistanalyst.htm
http://www.casa.ucl.ac.uk/sanjay/software_isovistanalyst.htm
http://www.casa.ucl.ac.uk/sanjay/software_isovistanalyst.htm
http://www.casa.ucl.ac.uk/sanjay/software_isovistanalyst.htm
http://www.casa.ucl.ac.uk/sanjay/software_isovistanalyst.htm


easiest to explain in that it depends entirely on how near the observer is to some edge,
and the field is largely structured by the width of each street. The largest distances and
diameters are highly correlated (r 2 � 0:835), with the axial structure of the system
clearly marked in these fields. In fact, although we will not do so, these measures
can be used directly in the extraction of axial lines although this would depend not
on geometric issues which drive the current quest but on image-processing techniques
(Ratti, 2002).We have begun this process and first results are reported in Carvalho and
Batty (2003). Average distance smoothes the kinds of striations which characterize
fields based on minimum and maximum distances but, in all these cases, the measures
show the existence of visual threshold particularly at points of discontinuity where
vistas close or open up.

Area and perimeter are highly correlated at r 2 � 0:736, but it is area and average
distance that have the strongest correlation with r 2 � 0:866. Area is correlated with the
maximum diametric distance as well, which is important as these two measures are
central to the algorithm to be used in extracting axial lines which cover isovist areas in
the most efficient way. The three ratio coefficients that measure how close each isovist
is to circles, lines, and related geometric figures have rather low correlations with all
the other measures, including each other. This is largely because these measures detect
very different features of the system. Convex spaces are the exception rather than the
rule in street systems, such as the ones we deal with here, the same being true of compact
and circular spaces.What these fields show is that smaller spaces in this system tend to
be more compact and convex, although the irregularity of the system even in large

(a) Maximum diametric length (b) Area (c) Perimeter
fDmax

i g, m � 87, s � 36 fai g, m � 869, s � 528 f pi g, m � 390, s � 124

(d) Minimum distance (e) Farthest distance (f) Average distance

fdmin
i g, m � 2:538, s � 1:606 fdmax

i g, m � 72, s � 33 f�di g, m � 22, s � 7:566

(g) Convexity (h) Compactness (i) Circularity
fGi g, m � 0:254, s � 0:040 fCmax

i g, m � 0:338, s � 0:123 fYi g, m � 0:271, s � 0:071

Figure 6. Isovist fields for nine standard geometric measures.
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wide streets tends to destroy any meaningful association with direct areal or distance
measures. Convexity is highest in the widest streets, compactness in the smaller shorter
streets, and circularity at the edges of the system as an artifact of the measure itself. As
we might expect, there is little association with the pattern of isovists which tend to be
nonconvex, noncompact, and noncircular.

These fields form the measures from which axial lines can be extracted by using the
algorithm presented earlier and illustrated in figure 4. In essence, the procedure works
with a specific measure for each viewshed or isovist, ordering the isovists according to
this measure, usually from largest to smallest, starting with the largest and selecting
the isovist associated with this as being the most important in the system. This space is
then approximated by the maximum diametric distance Dmax

l , the overall space reduced
by this isovist, and then the next viewpoint and isovist associated with the next largest
measure in the remaining space selected. The procedure continues in this way, approx-
imating each subsequent space by its relevant maximum diameter until all space has
been covered.We have applied six variants of this algorithm with different measures in
each case. The first baseline case adopts the maximum diameter as the measure to
optimize and thus the procedure selects space associated with this maximum which is
then approximated by the same diameter. The second method is based on area, the
third on average distance, and the remaining three use the convexity, compactness, and
circularity coefficients for the dominance ranking.

We show the results of these applications in figures 7(a) and (b). In figure 7(a), for
the first application based on selection according to the longest diametric length of
each isovist, we show four related maps: the isovists associated with the ranking with
most important as the top layer and all others in order beneath the first; the number of
overlaps of each isovist which gives an impression of how central different locations
are within the space; the viewpoints of each isovist; and their axial linesöthe maxi-
mum diametric diameters which form the axial map. In fact, it is essential to read these
results in terms both of isovist spaces and of axial lines because the relative importance
is based first and foremost on the spaces, not on the lines used to approximate them.
There is an immediate connection between spaces and lines, one that does not formally
exist in space syntax, despite the loose association between axial lines and convex spaces.
It is tempting to read the axial lines separately in the manner of traditional space syntax
where the underlying space is almost forgotten, but the line is only one side of the coin in
interpreting the importance of different spaces making up a morphology. Notwithstanding
the characteristic used to rank importance, the length of the axial line and the area covered
by all the associated isovists are basic measures which indicate the efficiency of the
application. We illustrate only the axial maps for each of the remaining five applications
in figure 7(b).

It is immediately clear from these results that the rankings based on longest lines,
largest areas, and largest average distances give results that are much more efficient
than those which depend on the geometric ratios which do not really reflect the
linearity of the underlying street system. We illustrate a series of quantitative measures
relating to the number and length of lines and areas of associated isovist spaces for
each of the six applications in table 1 (over), where we also contrast these with the
more minimal information we have for the Hillier and Hanson (1984) and Peponis et al
(1998) applications. We need to be clear about what is shown here. We will now define
the total number of isovists and axial lines generated from each application by L, the
area of the selected isovist by al (l � 1, 2, .::, L), and the length of the maximum
diametric distance by Dmax

l (l � 1, 2, .::, L). In table 1 we show the number L, the total
line length

P
l D

max
l , the average line length

P
l D

max
l =L, the total area

P
l al , and the

average area
P

l al=L. As the selected isovists overlap, we can compare the total area
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with the actual area of the streetscape (which in this case is 8129 units of area).We thus
form the ratio

P
l al=8129 which gives the relative duplication of space from such

overlaps in comparison with a system where there is no such duplication, as, for
example, in a system divided into mutually exclusive convex spaces as in figure 5(b).

As we implied above, formal optimization procedures have never been developed
within space syntax in the quest to generate lines that best summarize convex spaces,
and thus there is no criterion by which to judge the appropriateness of an axial map.
We would argue, however, that this is essential if we are to make progress. To this end,

(a)

(b)

Isovists in dominance order Viewpoints of dominant isovists

Overlap count of dominant isovists Axial lines as maximum diameters

Area Average distance Convexity

Compactness Circularity

Figure 7. Axial lines generated by the isovist-sorting algorithm: (a) isovists, overlaps, viewsheds,
and axial maps for the longest line sort; (b) axial maps for the five remaining sorts.

Axial lines and axial maps 631



we suggest that a critical measure is the area associated with a unit line for any system
of isovist areas and axial lines. We wish to minimize this average to find a set of lines
which covers the area in the most parsimonious way. We also want to minimize the
number of these lines as well as their areal linearity. Accordingly, we define the measure

X � L

X
l

alX
l

Dmax
l

0B@
1CA . (7)

which we will use as a test of efficiency. We show this in table 1 and there it is
immediately clear that the distance and area methods come out best. The method
which optimizes the selection of isovists based on the length of their maximum
diameter generates 46 lines which have an average length of 70 units covering a unit
area of 21500. This contrasts with the second method in which isovists are selected on
the basis of their area; these yield 39 lines but these on average are shorter at 66 and
more area is covered at 23225 unit area. The method in which average distance is
optimized yields even less lines at 36, but the line is shorter at 63 and the area covered
smaller at 20 628. The ratio methods all generate much larger numbers of lines, with
the convexity measure generating twice as many (72) lines as the average distance. The
efficiency ratio X bears all this out, with the efficiency ranking from the longest line
method (best), largest average distance, largest area, greatest circularity, compactness,
and convexity (worst). The key issue here is that the number of axial lines is not in and
of itself the most important criterion, for this must be matched against their length
and the space that they summarize.

3.4 The statistics of axial lines: a preliminary analysis
To conclude our analysis of these six applications we will make a brief foray into the
statistical form of the isovist fields and the lines that are generated from the sorting
procedures used to partition them into significant viewpoints. An attempt was made by
Batty (2001) to initiate such analysis for a range of parameters describing such fields,
but here we concentrate exclusively on the maximum diametric distance associated
with these spaces. There is little doubt that this area is yet another in space syntax
analysis which has never been researched and is an essential focus in refining
and extending the theory. The distribution fDmax

i g over all 8129 isovists for Gassin is

Table 1. A comparison of methods for generating axial lines.

Method Number Total Average Total Average Area Efficiency
of axial line line area area covered to ratio
lines L length length covered

P
l al =L total area XP

l D
max
l

P
l D

max
l =L

P
l al

P
l al =8129

Hillier and 40 1 565 38 nr nr nr nr
Hanson

Peponis et al 1 13 959 74 nr nr nr nr
Peponis et al 2 37 1 635 44 nr nr nr nr
Longest line 46 3 211 70 21 500 467 2.645 308
Largest area 39 2 592 66 23 225 596 2.857 349
Largest average 36 2 276 63 20 628 573 2.538 326

distance
Greatest 72 3 409 47 29 971 416 3.687 633

convexity
Most compact 67 2 637 39 21 929 327 2.698 557
Nearest circular 60 3 768 63 26 281 438 3.234 418

nrÐnot relevant.
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nonnormal in that its frequency distribution is bimodal which is a characteristic of
linear distances in isovist fields for street systems noted in earlier applications (Batty,
2001). The bimodality essentially classifies isovists into long and short vistas, which
would appear to be consistent with systems which are dominated by a strict hierarchy
of streets. The frequency distribution of lengths, however, is not as useful a plot as the
cumulative frequency, and the form that we prefer here, much used in scaling analysis,
is called the rank ^ size. This is based on a plot of the distance lengths against their
rank which we show for the set fDmax

i g in figure 8 where we show the frequency,
cumulative frequency, and the rank ^ size, which is a reverse plot of the cumulative
frequency from largest to smallest distance.

The rank ^ size is essentially linear with r 2 � 0:983. There is thus no evidence of
scaling in the distribution of isovist lengths within their isovist field. However, in any
process of selection which begins with the largest lengths and orders these so that the
space under consideration is successively reduced, it is likely that scaling will be
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Figure 8. Frequencies and rank ^ size distributions of maximum diametric lengths.
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introduced into this process. In short, the largest isovist in the system is first identified
and as this is likely to intersect with many of the other largest isovists, then most of the
largest lengths get ruled out of consideration at this first stage. As the process con-
tinues, the spaces get smaller and the isovists at that length size become increasingly
less likely to intersect one another and thus more and more smaller isovist lengths are
included. In short, the algorithm we use to select isovist lengths introduces scaling into
a system that does not have scaling already. This is because we assume that there is a
strict order of space from largest to smallest and that the number of large spaces is
likely to be considerably smaller than the number of small spaces. This is the criterion
for scaling which we might expect when we examine the distribution of isovist lengths
which form the axial map.

In figure 9 we have graphed the rank ^ size relations based on each set fDmax
l g for

each of the six applications of the algorithm. These show a degree of scaling although,
when presented in logarithm form, they imply something closer to log normality than
the classic Pareto power function. In table 2 we show these relations fitted for two
functions: the traditional power-law form (Dmax

l )0 � arÿbl and the exponential form
(Dmax

l )0 � a exp (ÿ bri ), where the results are all significant for both models, with the
coefficients of determination greater for the exponential than the power laws. We also
compare the line lengths for the Hillier and Hanson (1984) and Peponis et al (1998)
examples in this table where it is also clear that the axial lines produced by these
traditional methods are also scaling. This is good initial evidence that axial lines are
scaling because of the process of their selection and the general space syntax assump-
tion that it is essential to identify the importance of spaces according to their area,
with the largest spaces taking priority.
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4 An improved algorithm: the full Gassin application
4.1 Scale and resolution in space syntax
It is very clear from the discussion so far that the scale at which any spatial system is
represented has an important effect on the way the degree of detail is represented. This
in turn is likely to affect the number of spaces into which it is partitioned, the best
example being a building or streetscape in which there are thin objects (such as
columns) not judged to be part of the building fabric. At a certain level of resolution,
these objects will disappear as the scale becomes too coarse for their detection. The
same would be true for detailed crenellations, entries, and such like in the building
fabric. Consider the plan of Gassin in figure 5. At the level of resolution at which it is
represented by Hillier and Hanson (1984) in figure 5(a) or the slightly lower level of
resolution used in its digitization in figure 5(d), details of less than 2 m2 would dis-
appear and thus many nooks and crannies essential to the visualscape would be lost.
This line of argument immediately leads to the notion that the number of convex
spaces or distinct viewpoints used to form isovists will vary with the level of resolution.
In turn this means that the number of axial lines derived traditionally by manual
means or by using the algorithm developed here would vary. As more detail is picked
up at ever finer scales, the number of axial lines increases.

Analysis of scale and aggregation is central to contemporary spatial analysis. The
most comprehensive statement is by Openshaw (1984) who identified crucial changes
posed by aggregating scale as the modifiable areal unit problem. In essence, he argued
that, as the scale of representation changes and if the morphology of the space which is
used to classify spatial variation changes too, conventional spatial analysis would yield
differing results which, in the extreme, might lead to contradictory inferences at differ-
ent scales. A variant of this problem in terms of measurement involves the notion of
the fractal line in that, as the scale becomes finer, more and more detail is picked up,
leading to changes in standard measurements, such as the length of a line. This
has been demonstrated many times; the most famous examples being for coastlines
(Mandelbrot, 1967) and political borders (Richardson, 1961).

We can easily demonstrate this for Gassin using our trial software which is
structured so that the level of resolution (number of pixels used to detect the street-
scape and building outlines) is easily varied. The applications in the previous sections
are based on a 2� 2 pixel size which generates a 201� 201 pixel map within which the
streetscape occupies 8129 pixels.We can vary this to a 4� 4 pixel size with a 101� 101
map, an 8� 8 pixel size which gives a 51� 51 map, and a 16� 16 pixels size giving a

Table 2. Estimation of power and exponential relations for axial distances.

Method Number Power Exponential
of axial (Dmax

l )0 � arÿb
l

(Dmax
l )0 � a exp (ÿ bri )

lines, L
a b r 2 a b r 2

Hillier and Hanson 40 2.488 ÿ0.563 0.798 1.995 ÿ0.025 0.914
Peponis et al 1 13 2.409 ÿ0.542 0.761 2.262 ÿ0.066 0.939
Peponis et al 2 37 2.414 ÿ0.587 0.766 2.048 ÿ0.027 0.934
Longest line 46 2.403 ÿ0.548 0.913 2.200 ÿ0.018 0.979
Largest area 39 2.273 ÿ0.521 0.941 2.166 ÿ0.020 0.944
Largest average 36 2.528 ÿ0.587 0.789 2.169 ÿ0.023 0.958

distance
Greatest convexity 72 2.422 ÿ0.792 0.931 1.997 ÿ0.011 0.944
Most compact 67 2.344 ÿ0.724 0.817 1.889 ÿ0.010 0.907
Nearest circular 60 2.438 ÿ0.775 0.929 2.172 ÿ0.015 0.976
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25� 25 map. When we represent Gassin at these different levels, the number of isovist
fields, sorted by maximum diametric length (and hence axial lines) reduces consistently
and dramatically as we show in table 3. As we have only four levels of aggregation, we
can only speculate as to the nature of the relationship between the number of axial
lines and the level of resolution but, as resolution is a two-dimensional variable and the
axial line one-dimensional, we might expect this relation to be exponential. Indeed
from table 3 it is clear that, as the number of pixels associated with the streetscape
increases, the number of axial lines increases but at an exponentially decreasing rate.

4.2 Axial lines and isovist fields in GIS: the ArcView extension
To demonstrate the importance of this question of scale, we have implemented the
algorithm shown in figure 4 as an extension to the desktop GIS ArcView which enables
us to import any vector-based image of the building outline into the GIS. In fact, we
first convert the raster scan of Gassin from Hillier and Hanson's (1984) book into the
appropriate vector map using the freeware WinTopo. We then set a grid of viewpoints
at any level of resolution (akin to the pixel raster of StarlogoT), fix any angle of

Table 3. Axial lines for Gassin at different scales.

Level of pixel Size of Pixels in Number of Time for sorting
resolution pixel space streetscape axial lines algorithm (minutes)

2� 2 201� 201 8129 46 21
4� 4 101� 101 2329 26 4
8� 8 51� 51 737 7 2
16� 16 25� 25 204 2 1.5

(a)

(b)

Figure 10. Isovist centroids and axial lines computed from the ArcView extension.
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incremental rotation or sweep around the viewshed, and compute isovist polygons
from intersections of the rays from the viewpoint to the building outlines. As the level
of resolution of the building outlines is invariant to the grid of viewpoints, then the
isovist polygons will also be relatively invariant to the resolution of this grid. As
the grid gets denser, the isovist polygons will change in shape but, as they are based
on intersections of the rays with a fixed outline, this variation will be considerably
smaller than that posed by approximating both viewpoints and building outlines by a
standard grid as we do in StarlogoT. The greatest variation in the shape of isovists will
thus come from differences in the angle of rotation, not the density of the grid itself.
The major advantage of implementing this in ArcView is the fact that the spatial
system can be represented in vector form, which is stable regardless of the number
and resolution of the isovists themselves.

We compute and sort the isovists based on the strict hierarchy of maximum
diametric lengths using the detailed plan of Gassin shown in figure 10(a). We have
set the parametersöthe number of viewpoints, and the incremental angleöat the
same levels of resolution as the applications given in the previous section, with around
8000 viewpoints and a 18 angle of sweep. However, as figure 10(a) shows, the town plan
is at a much higher level of resolution than the previous applications and thus the
number of irregular building faces far exceeds those of the digitized plan in figure 5(d).
Thus one would expect there to be more isovists generated through the sorting proce-
dure as more detail is being picked up. This is borne out in the fact that the number
of isovists (and hence axial lines), selected is 56, some 20% more than the cruder
digitization but consistent with the relation implied in table 3. These are shown in

(a)

(b) (c)

Figure 11. Two-dimensional and three-dimensional views of the dominance hierarchy of overlapping
isovists.
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figure 10(b). However, what this application suggests is that the number of axial lines
would vary much less when the density of viewpoints changes than in the case where
the level of resolution of the building outlines and streetscape change.

There are many advantages to implementing such algorithms within well-developed
standard software such as ArcView which is extremely modest in cost. In particular,
the many extensions that can be used to visualize and compute spatial metrics for
maps and layouts help extend the analysis. What we are able to do here is to visualize
the way isovists overlap with one another much more easily than we did in figure 7, by
invoking the 3d-Analyst extension. In figure 11 we show two perspective views of the
overlap where we have colored the isovists according to the scale of their dominance
and ordered them in three dimensions from top to bottom. This shows immediately
how axial lines are a very weak way of visualizing this kind of spatial complexity. It also
shows that the sorting algorithm we use always leads to isovists which are connected
through their overlaps because the original streetscape space is connected.

5 Conclusions: next steps
One immediate objection to the methods we have developed here is that they do not
solve the traditional space syntax problem as originally formulated by Hillier and
Hanson (1984). We sidestep the problem by replacing the task of generating a con-
nected axial map which spans a partition of space into convex sets with one in which
we generate a map, not necessarily connected, which spans a partition of the space into
connected viewsheds, sorted with respect to length or area, or any other criterion
associated with the viewsheds. In this sense, we might be accused of adopting a quick
fix to the problem. We would agree with this and consider that the space syntax
problem needs to be entirely reformulated with each of its assumptions (about the
need to partition into convex spaces, approximate these by straight lines, and ensure
that these lines connect) all coming under scrutiny in terms of the best way of
representing urban morphology. Moreover, this representation must be tied much
more strongly to behavioral issues, to the nature of economic activities in cities which
is the core of urban geography, and to ways in which people interact through various
modes of transport.

Space syntax needs to be considered as one version of the generic problem of
spatial representation which involves simplification of geometric form to reflect more
parsimonious ways of understanding the importance of different spaces and the way
they are related. In this sense, the axial line may not be the appropriate unit of analysis
but something more basic such as the parcel or even some fine-level grid should be
explored. More than one axial line might be used to approximate an isovist as one
anonymous referee of this paper suggested and such a wealth of possibilities are all
worthy of testing. In short, space syntax needs to embrace and relate to other
approaches to urban morphology, such as shape grammars, Q-analysis, cellular sys-
tems, fractal representations, and so on. This is the wider and longer term agenda. In
the shorter term, the strictures posed in summarizing space by straight lines need to be
explored further, and this in turn raises questions as to the purpose of defining such
lines when simpler and more obvious ways or relating the spaces that they summarize
are readily available.

With respect to the actual methods presented here, there is much work to do. The
basic algorithm we have developed sorts isovists according to a very strict dominance
ranking. We need to relax this in the manner that we noted in our final example
where the larger isovist envelope based on the longest axial line was constructed and
then used as a basis for ranking.We also intend to explore ways in which isovists might
be used as seeds in some evolutionary solution to generating spatial subdivisions which
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meet a variety of criteria, thus synthesizing bottom-up criteria with top-down. This
will lead us to pose the partition problem in a rather different way, taking us to global
rather than local optimization.

There are other improvements to the algorithms developed here that we might
make rather quickly. So far, space syntax has not been able to handle the third
dimension, largely because it remains a manual method in terms of its representation
through axial lines. However, it is easy to build terrain into the raster-based viewshed
representations which have been adopted here and, although our examples do not deal
with varying terrain (because the terrain of Gassin was not published in the original
application), it would be a simple matter to add height to the raster and to truncate the
ray tracing when distant areas disappear from sight. True extensions to deal with three-
dimensional environments are on the horizon but, once again, real progress can be
made only if the basic space syntax problem is reformulated.

In short, a major research program is required which must be part of our wider
quest to develop better ways of representing urban morphology so we can understand
the ways building and townscapes evolve through organic growth and change as well as
through design. We are already examining a whole series of extensions to the problem
of isovist representation and sorting using the methods that we have presented here
while we are also working on ways of representing relations between spaces by using
standard ideas of graph theory which are in use in other areas. These, we hope, will
provide us with finer foundations for space syntax in particular, and the study of urban
and architectural morphology in general.
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