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Glossary

Agent-based models Systems composed of individuals
who act purposely in making locational/spatial deci-
sions.

Bifurcation A process whereby divergent paths are gen-
erated in a trajectory of change in an urban system.

City size distribution A set of cities ordered by size, usu-
ally population, often in rank order.

Emergent patterns Land uses or economic activities
which follow some spatial order.

Entropy maximizing The process of generating a spatial
model by maximizing a measure of system complexity
subject to constraints.

Equilibrium A state of the urban system which is bal-
anced and unchanging.
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Exponential growth The process whereby an activity
changes through positive feedback on itself.

Fast dynamics A process of frequent movement between
locations, often daily.

Feedback The process whereby a system variable influ-
ences another variable, either positively or negatively.

Fractal structure A pattern or arrangement of system el-
ements that are self-similar at different spatial scales.

Land use transport model A model linking urban activi-
ties to transport interactions.

Life cycle effects Changes in spatial location which are
motivated by aging of urban activities and populations.

Local neighborhood The space immediately around
a zone or cell.

Logistic growth Exponential growth capacitated so that
some density limit is not exceeded.

Lognormal distribution A distribution which has fat and
long tails which is normal when examined on a loga-
rithmic scale.

Microsimulation The process of generating synthetic
populations from data which is collated from several
sources.

Model validation The process of calibrating and testing
a model against data so that its goodness of fit is opti-
mized.

Multipliers Relationships which embody nth order ef-
fects of one variable on another.

Network scaling The in-degrees and out-degrees of
a graph whose nodal link volumes follow a power
law.

Population density profile A distribution of populations
which typically follows an exponential profile when ar-
rayed against distance from some nodal point.

Power laws Scaling laws that order a set of objects accord-
ing to their size raised to some power.

Rank size rule A power law that rank orders a set of ob-
jects.

Reaction-diffusion The process of generating changes as
a consequence of a reaction to an existing state and in-
teractions between states.

Scale-free networks Networks whose nodal volumes fol-
low a power law.

Segregation model A model which generates extreme
global segregation from weak assumptions about local
segregation.

Simulation The process of generating locational distribu-
tions according to a series of sub-model equations or
rules.

Slow dynamics Changes in the urban system that take
place over years or decades.

Social physics The application of classical physical prin-

ciples involving distance, force and mass to social situ-
ations, particularly to cities and their transport.

Spatial interaction The movement of activities between
different locations ranging from traffic distributions to
migration patterns.

Trip distribution The pattern of movement relating to
trips made by the population, usually from home to
work but also to other activities such as shopping.

Urban hierarchy A set of entities physically or spatially
scaled in terms of their size and areal extent.

Urban morphology Patterns of urban structure based on
the way activities are ordered with respect to their lo-
cations.

Urban system A city represented as a set of interacting
subsystems or their elements.

Definition of the Subject

Cities have been treated as systems for fifty years but only
in the last two decades has the focus changed from aggre-
gate equilibrium systems to more evolving systems whose
structure emerges from the bottom up.We first outline the
rudiments of the traditional approach focusing on equi-
librium and then discuss how the paradigm has changed
to one which treats cities as emergent phenomena gener-
ated through a combination of hierarchical levels of de-
cision, driven in decentralized fashion. This is consistent
with the complexity sciences which dominate the simula-
tion of urban form and function. We begin however with
a review of equilibrium models, particularly those based
on spatial interaction, and we then explore how simple dy-
namic frameworks can be fashioned to generate more re-
alistic models. In exploring dynamics, nonlinear systems
which admit chaos and bifurcation have relevance but re-
cently more pragmatic schemes of structuring urban mod-
els based on cellular automata and agent-based modeling
principles have come to the fore. Most urban models deal
with the city in terms of the location of its economic and
demographic activities but there is also amove to link such
models to urban morphologies which are clearly fractal in
structure. Throughout this chapter, we show how key con-
cepts in complexity such as scaling, self-similarity and far-
from-equilibrium structures dominate our current treat-
ment of cities, how we might simulate their functioning
and how we might predict their futures. We conclude with
the key problems that dominate the field and suggest how
these might be tackled in future research.

Cities were first conceived as complex systems in the
1960s when architects and urban planners began to change
their perceptions that cities be treated as ‘works of art’
to something much more akin to a functioning economic
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system that required social engineering. Since the time of
Newton, social scientists had speculated that social sys-
tems could be described using concepts from classical
physics and the notion that interrelationships between
the component parts of such systems might be articu-
lated using concepts of mass, force and energy established
a rudimentary framework that came to be known as so-
cial physics. Together with various macro-economic theo-
ries of how economies function based on Keynesian ideas
of input, output and economic multipliers, cities were as-
sumed to be equilibrium systems in which their interac-
tions such as traffic, trade flows, and demographic migra-
tion could be modeled in analogy to gravitation. These
flows were seen as complementary to the location of em-
ployment and population which reflected costs of travel
and land rent, in turn the product of micro-economic the-
ories of how agents resolved their demand for and the sup-
ply of space through the land market. Operational models
for policy analysis were initially built on this basis and used
for testing the impact of different plans for making cities
more efficient, locationally and in terms of their move-
ment/traffic patterns.

This early work did not emphasize the dynamics of
urban change or the morphology of cities. Thus theories
and models were limited in their ability to predict pat-
terns of urban growth as reflected in sprawl and the re-
generation of urban areas. The first wave of models which
treated the city system in aggregate, static and top down
fashion, fell into disrepute due to these limitations. To ad-
dress them, the focus moved in the 1980s to more theo-
retical considerations in which static social physics types
of model were embedded in nonlinear dynamic frame-
works built around ideas in chaos, and bifurcation theory.
A parallel development in simulating urban morphology
was built around treating cities as fractals which evolved
from the bottom up and operational models in which such
morphologies were governed using cellular automata were
developed. Developments in moving from aggregate to
disaggregate or bottom-up individual-based models were
spawned from these developments with agent-basedmod-
eling providing a new focus to the field. There is now amo-
mentum for treating urban aggregates through new ideas
about growth and form through scaling while new forms
of representing cities through networks linking these to
fractal morphologies are being developed through net-
work science at different scales. These will ultimately lead
to operational urban and transport models built from the
bottom up which simulate spatial processes operating on
networks and other morphologies. These have the poten-
tial to address key problems of urban growth and evolu-
tion, congestion, and inequality.

Introduction

Cities were first treated formally as systems when Gen-
eral System Theory and Cybernetics came to be applied to
the softer social sciences in the 1950s. Ludwig von Berta-
lanffy [67] in biology and Norbert Wiener [73] in engi-
neering gave enormous impetus to this emerging interdis-
ciplinary field that thrust upon us the idea that phenom-
ena of interest in many disciplines could be articulated in
generic terms as ‘systems’. Moreover the prospect that the
systems approach could yield generic policy, control and
management procedures applicable to many different ar-
eas, appeared enticing. The idea of a general systems the-
ory was gradually fashioned from reflections on the way
distinct entities which were clearly collections of lower or-
der elements, organized into a coherent whole, displaying
pattern and order which in the jargon of the mid-twenti-
eth century was encapsulated in the phrase that “the whole
is greater than the sum of the parts”. The movement be-
gan in biology in the 1920s, gradually eclipsing parts of
engineering in the 1950s and spreading to the manage-
ment and social sciences, particularly sociology and polit-
ical science in the 1960s. It was part of a wave of change in
the social sciences which began in the late 19th century as
these fields began to emulate the physical sciences, espous-
ing positivist methods which had appeared so successful in
building applicable and robust theory.

The focus then was on ways in which the ele-
ments comprising the system interacted with one another
through structures that embodied feedbacks keeping the
system sustainable within bounded limits. The notion that
such systems have controllers to ‘steer’ them to meet cer-
tain goals or targets is central to this early paradigm and
the science of “. . . control and communication in the an-
imal and the machine” was the definition taken up by
Norbert Wiener [73] in his exposition of the science of
cybernetics. General system theory provided the generic
logic for both the structure and behavior of such sys-
tems through various forms of feedback and hierarchical
organization while cybernetics represented the ‘science of
steersmanship’ which would enable such systems to move
towards explicit goals or targets. Cities fit this character-
ization admirably and in the 1950s and 1960s, the tradi-
tional approach that articulated cities as structures that re-
quired physical and aesthetic organization, quickly gave
way to deeper notions that cities needed to be understood
as general systems. Their control and planning thus re-
quired much more subtle interventions than anything that
had occurred hitherto in the name of urban planning.

Developments in several disciplines supported these
early developments. Spatial analysis, as it is now called,
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began to develop within quantitative geography, linked to
the emerging field of regional science which represented
a synthesis of urban and regional economics in which
location theory was central. In this sense, the economic
structure of cities and regions was consistent with classical
macro and micro economics and the various techniques
andmodels that were developed within these domains had
immediate applicability. Applications of physical analo-
gies to social and city systems, particularly ideas about
gravitation and potential, had been explored since the mid
19th century under the banner of ‘social physics’ and as
transportation planning formally began in the 1950s, these
ideas were quickly adopted as a basis for transport mod-
eling. Softer approaches in sociology and political science
also provided support for the idea of cities as organiza-
tional systems while the notion of cybernetics as the basis
for management, policy and control of cities was adopted
as an important analogy in their planning [26,53].

The key ideas defined cities as sets of elements or com-
ponents tied together through sets of interactions. The
archetypal structure was fashioned around land use ac-
tivities with economic and functional linkages between
them represented initially in terms of physical movement,
traffic. The key idea of feedback, which is the dynamic
that holds a general system together, was largely repre-
sented in terms of the volume and pattern of these inter-
actions, at a single point in time. Longer term evolution
of urban structure was not central to these early concep-
tions for the focus was largely on how cities functioned as
equilibrium structures. The prime imperative was improv-
ing how interactions between component land uses might
be made more efficient while also meeting goals involv-
ing social and spatial equity. Transportation and housing
were of central importance in adopting the argument that
cities should be treated as examples of general systems and
steered according to the principles of cybernetics.

Typical examples of such systemic principles in action
involve transportation in large cities and these early ideas
about systems theory hold as much sway in helping make
sense of current patterns as they did when they were first
mooted fifty or more years ago. Different types of land use
with different economic foci interact spatially with respect
to how employees are linked to their housing locations,
how goods are shipped between different locations to ser-
vice the production and consumption that define these ac-
tivities, how consumers purchase these economic activi-
ties which are channeled through retail and commercial
centers, how information flows tie all these economies to-
gether, and so on: the list of linkages is endless. These
activities are capacitated by upper limits on density and
capacity. In Greater London for example, the traffic has

reached saturation limits in the central city and with few
new roads being constructed over the last 40 years, the fo-
cus has shifted to improving public transport and to road
pricing.

The essence of using a systems model of spatial inter-
action to test the impact of such changes on city structure
is twofold: first such a model can show how people might
shift mode of transport from road to rail and bus, even
to walking and cycling, if differential pricing is applied to
the road system. The congestion charge in central London
imposed in 2003 led to a 30 percent reduction in the use of
vehicles and this charge is set to increase massively for cer-
tain categories of polluting vehicles in the near future. Sec-
ond the slightly longer term effects of reducing traffic are
to increase densities of living, thus decreasing the length
and cost of local work journeys, also enabling land use to
respond by changing their locations to lower cost areas. All
these effects ripple through the system with the city sys-
tem models presented here designed to track and predict
such nth order effects which are rarely obvious. Our fo-
cus in this chapter is to sketch the state-of-the-art in these
complex systems models showing how new developments
in the methods of the complexity sciences are building on
a basis that was established half century ago.

Since early applications of general systems theory, the
paradigm has changed fundamentally from a world where
systems were viewed as being centrally organized, from the
top down, and notions about hierarchy were predominant,
to one where we now consider systems to be structured
from the bottom up. The idea that one or the other – the
centralized or the decentralized view – are mutually ex-
clusive of each other is not entirely tenable of course but
the balance has certainly changed. Theories have moved
from structures and behaviors being organized according
to some central control to theories about how systems re-
tain their own integrity from the bottom up, endorsing
what Adam Smith over 300 years ago, called “the hidden
hand”. This shift has brought onto the agenda the notion
of equilibrium and dynamics which is now much more
central to systems theory than it ever was hitherto. Sys-
tems such as cities are no longer considered to be equilib-
rium structures, notwithstanding that many systems mod-
els built around equilibrium are still eminently useful. The
notion that city systems are more likely to be in disequi-
librium, all the time, or even classed as far-from-equilib-
rium continually reinforcing the move away from equilib-
rium, is comparatively new but consistent with the speed
of change and volatility in cities observed during the last
fifty years.

The notion to that change is nowhere smooth but dis-
continuous, often chaotic, has become significant. Equi-
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librium structures are renewed from within as unantic-
ipated innovations, many technological but some social,
change the way people make decisions about how they lo-
cate and move within cities. Historical change is impor-
tant in that historical accidents often force the system onto
a less than optimal path with such path dependence being
crucial to an understanding of any current equilibria and
the dynamic that is evolving. Part of this newly emerg-
ing paradigm is the idea that new structures and behav-
iors that emerge are often unanticipated and surprising. As
we will show in this chapter, when we look at urban mor-
phologies, they are messy but ordered, self-similar across
many scales, but growing organically from the bottom up.
Planned cities are always the exception rather than the rule
and when directly planned, they only remain so for very
short periods of time.

The new complexity sciences are rewriting the the-
ory of general systems but they are still founded on the
rudiments of structures composed of elements, now often
called actors or agents, linked through interactions which
determine the processes of behavior which keep the system
in equilibrium and/or move it to new states. Feedback is
still central but recently has beenmore strongly focused on
how system elements react to one another through time.
The notion of an unchanging equilibrium supported by
such feedbacks is no longer central; feedback is now largely
seen as the way in which these structures are evolved to
new states. In short, system theory has shifted to consider
such feedbacks in positive rather than negative terms al-
though both are essential. Relationships between the sys-
tem elements in terms of their interactions are being en-
riched using new ideas from networks and their dynam-
ics [56]. Key notions of how the elements of systems scale
relative to one another and relative to their system hier-
archies have become useful in showing how local actions
and interactions lead to global patterns which can only be
predicted from the bottom up [54]. This new view is about
how emergent patterns can be generated usingmodels that
grow the city from the bottom up [37], and we will discuss
all these ideas in the catalog of models that we present be-
low.

We begin by looking at models of cities in equilib-
riumwhere we illustrate how interactions between key sys-
tem elements located in space follow certain scaling laws
reflecting agglomeration economies and spatial competi-
tion. The network paradigm is closely linked to these ideas
in structural terms. None of these models, still important
for operational simulation modeling in a policy context,
have an internal dynamic and thus we turn to examine
dynamics in the next section. We then start with simple
exponential growth, showing how it can be capacitated as

logistic growth from which nonlinear behaviors can re-
sult as chaos and bifurcation. We show how these models
might be linked to a faster dynamics built around equilib-
rium spatial interaction models but to progress these de-
velopments, we present much more disaggregate models
based on agent simulation and cellular automata princi-
ples. These dynamics are then generalized as reaction-dif-
fusion models.

Our third section deals with howwe assemblemore in-
tegrated models built from these various equilibrium and
dynamic components or sub-models. We look at large-
scale land use transport models which are equilibrium in
focus. We then move to cellular automata models of land
development, concluding our discussion with reference to
the current development of fine scale agent-based mod-
els where each individual and trip maker in the city sys-
tem is simulated. We sprinkle our presentation with vari-
ous empirical applications, many based on data for Greater
London showing how employment and population densi-
ties scale, how movement patterns are consistent with the
underling infrastructure networks that support them, and
how the city has grown through time. We show how the
city can be modeled in terms of its structure and the way
changes to it can be visualized. We then link these more
abstract notions about how cities are structured in spatial-
locational terms to their physical or fractal morphology
which is a direct expression of their scaling and complex-
ity. We conclude with future directions, focusing on how
such models can be validated and used in practical policy-
making.

Cities in Equilibrium

Arrangements of Urban Activities

Cities can usually be represented as a series of n locations,
each identified by i, and ordered from i D 1; 2; : : : ; n.
These locations might be points or areas where urban ac-
tivity takes place, pertaining either to the inter-urban scale
where locations are places not necessarily adjacent to one
another or at the intra-urban scale where a city is exhaus-
tively partitioned into a set of areas. We will use both
representations here but begin with a generic formulation
which does not depend on these differences per se.

It is useful to consider the distribution of locations
as places where differing amounts of urban activity can
take place, using a framework which shows how differ-
ent arrangements of activity can be consistently derived.
Different arrangements of course imply different physi-
cal forms of city. Assume there is N amount of activ-
ity to be distributed in n locations as N1;N2; : : : Begin-
ning with N1, there are N!/[N1!(N ! N1)! allocations of
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N1, (N ! N1)!/[N2!(N ! N1 ! N2)! allocations of N2,
(N !N1 !N2)!/[N3!(N !N1 !N2 !N3)! of N3 and so on.
To find the total number of arrangementsW, we multiply
each of these quantities together where the product is

W D N!Q
i
Ni !

: (1)

This might be considered a measure of complexity of the
system in that it clearly varies systematically for different
allocations. If all N activity were to be allocated to the first
location, then W D 1 while if an equal amount of activity
were to be allocated to each location, then W would vary
according to the size of N and the number of locations n.
It can be argued that the most likely arrangement of ac-
tivities would be the one which would give the greatest
possibility of distinct individual activities being allocated
to locations and such an arrangement could be found by
maximizing W (or the logarithm of W which leads to the
same). Such maximizations however might be subject to
different constraints on the arrangements which imply dif-
ferent conservation laws that the system must meet. This
would enable different types of urban form to be examined
under different conditions related to density, compactness,
sprawl and so on, all of which might be formalized in this
way.

To show how this is possible, consider the case where
we now maximize the logarithm ofW subject to meaning-
ful constraints. The logarithm of Eq. (1) is

lnW D ln(N!) !
X

i
ln(Ni !) ; (2)

which using Stirling’s formula, simplifies to

lnW " N C ln(N!) !
X

i

Ni lnNi : (3)

Ni which is the number of units of urban activity allocated
to location i, is a frequency that can be normalized into
a probability as pi D Ni /N . Substituting for Ni D Npi in
Eq. (3) and dropping the constant terms leads to

lnW / !
X

i
pi ln pi D H ; (4)

where it is now clear that the formula for the number of ar-
rangements is proportional to Shannon’s entropy H. Thus
the process of maximizing lnW is the well-known process
of maximizing entropy subject to relevant constraints and
this leads to many standard probability distributions [66].
Analogies between city and other social systems with sta-
tistical thermodynamics and information theory were de-
veloped in the 1960s and represented one of the first for-
mal approaches to the derivation of models for simulating

the interaction between locations and the amount of ac-
tivity attracted to different locations in city, regional and
transport systems. As such, it has become a basis on which
to build many different varieties of urban model [74].

Although information or entropy has been long re-
garded as a measure of system complexity, we will not take
this any further here except to show how it is useful in de-
riving different probability distributions of urban activity.
Readers are however referred to the mainstream literature
for both philosophic and technical expositions of the re-
lationship between entropy and complexity (for example
see [42]). The measureH in Eq. (4) is at a maximumwhen
the activity is distributed evenly across locations, that is
when pi D 1/n and H D ln n while it is at a minimum
when pi D 1 and p j D 0; j D 1; 2; : : : ; n; i ¤ j, and
H D 0. It is clear too that H varies with n; that is as the
number of locations increases, the complexity or entropy
of the system also increases. However what is of more im-
port here is the kind of distribution that maximizing en-
tropy generates whenH is maximized subject to appropri-
ate constraints. We demonstrate this as follows for a sim-
ple but relevant case where the key constraint is to ensure
that the system reproduces the mean value of an attribute
of interest. Let pi be the probability of finding a place i
which has Pi population residing there. Thenwemaximize
the entropy

H D !
X

i

pi ln pi ; (5)

subject to a normalization constraint on the probabilities
X

i
pi D 1 ; (6)

and a constraint on the mean population of places P̄ in the
system, that is

X

i
pi Pi D P̄ : (7)

The standard method of maximizing Eq. (5) subject to
constraint Eqs. (6) and (7) is to form a Langrangian L –
a composite of the entropy and the constraints

L D !
X

i
pi ln pi !ˇ

 
X

i
pi ! 1

!
!#

 
X

i
pi Pi ! P̄

!

(8)

where ˇ and # are multipliers designed to ensure that
the constraints are met. Maximizing (8) with respect to pi
gives

@L
@pi

D ln pi ! 1 ! ˇ ! #Pi D 0 ; (9)
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leading directly to a form for pi which is

pi D exp(!ˇ ! 1) exp(!!Pi ) D K exp(!#Pi) : (10)

K is the composite constant of proportionality which en-
sures that the probabilities sum to 1. Note also that the
sign of the parameters is determined from data through
the constraints. If we substitute the probability in Eq. (10)
into the Shannon entropy, the measure of complexity of
this systemwhich is at a maximum for the given set of con-
straints, simplifies to H D ˇ C 1 C # P̄. There are various
interpretations of this entropy with respect to dispersion of
activities in the system although these represent a trade-off
between the form of the distribution, in this case, the neg-
ative exponential, and the number of events or objects n
which characterize the system.

Distributions and Densities of Population

The model we have derived can be regarded as an approx-
imation to the distribution of population densities over
a set of n spatial zones as long as each zone is the same
size (area), that is, Ai D A;8i where nA is the total size
(area) of the system. A more general form of entropy takes
this area into account by maximizing the expected value
of the logarithm of the density, not distribution, where the
‘spatial’ entropy is defined as

S D !
X

i
pi ln

pi
Ai
; (11)

with the probability density as pi /Ai . Using this formula,
the procedure simply generalizes themaximization to den-
sities rather than distributions [10] and the model we have
derived simply determines these densities with respect to
an average population size P̄. If we order populations over
the zones of a city or even take their averages over many
cities in a region or nation, then they are likely to be dis-
tributed in this fashion; that is, we would expect there to
be many fewer zones or cities of high density than zones or
cities of low density, due to competition through growth.

However the way this method of entropy-maximizing
has been used to generate population densities in cities
is to define rather more specific constraints that relate to
space. Since the rise of the industrial city in the 19th cen-
tury, we have known that population densities tend to de-
cline monotonically with distance from the center of the
city. More than 50 years ago, Clark [29] demonstrated
quite clearly that population densities declined exponen-
tially with distance from the center of large cities and in
the 1960s with the application of micro-economic the-
ory to urban location theory following von Thünen’s [68]

model, a range of urban attributes such as rents, land val-
ues, trip densities, and population densities were shown
to be consistent with such negative exponential distribu-
tions [5]. Many of these models can also be generated us-
ing utility maximizing which under certain rather weak
constraints can be seen as equivalent to entropy-maximiz-
ing [6]. However it is random utility theory that has been
much more widely applied to generate spatial interaction
models with a similar form to the models that we generate
below using entropy-maximizing [20,46].

Wewill show how these typical micro-economic urban
density distributions can be derived using entropy-maxi-
mizing in the following way. Maximizing S in Eq. (11) or
H in Eq. (5) where we henceforth assume that the prob-
ability pi is now the population density, we invoke the
usual normalization constraint in Eq. (6) and a constraint
on the average travel cost C̄ incurred by the population
given as

P
i pi ci D C̄ where ci is the generalized travel

cost/distance from the central business district (CBD) to
a zone i. This maximization leads to

pi D K exp(!"ci ) (12)

where " is the parameter controlling the rate of decay of
the exponential function, sometimes called the ‘friction’ of
distance or travel cost.

Gravitational Models of Spatial Interaction

It is a simple matter to generalize this framework to gener-
ate arrangements of urban activities that deal with interac-
tion patterns, that is movements or linkages between pairs
of zones. This involves extending entropy to deal with two
rather than one dimensional systems where the focus of
interest is on the interaction between an origin zone called
i; i D 1; 2; : : : ; I and a destination zone j; j D 1; 2; : : : ; J
where there are now a total of IJ interactions in the sys-
tem. These kinds of model can be used to simulate routine
trips from home to work, for example, or to shop, longer
termmigrations in search of jobs, moves between residen-
tial locations in the housing market, as well as trade flows
between countries and regions. The particular application
depends on context as the generic framework is indepen-
dent of scale.

Let us now define a two-dimensional entropy as

H D !
X

i

X

j

pi j ln pi j : (13)

pi j is the probability of interaction between origin i and
destination j where the same distinctions between distri-
bution and density noted above apply. Without loss of



1048 C Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies

generality, we will assume in the sequel that these vari-
ables pi j covary with density in that the origin and desti-
nation zones all have the same area. The most constrained
system is where we assume that all the interactions origi-
nating from any zone i must sum to the probability pi of
originating in that zone, and all interactions destined for
zone jmust sum to the probability p j of being attracted to
that destination zone. There is an implicit constraint that
these origin and destination probabilities sum to 1, that is

X

i

X

j
pi j D

X

i
pi D

X

j
p j D 1 ; (14)

but Eq. (14) is redundant with respect to the origin and
destination normalization constraints which are stated ex-
plicitly as

P
j
pi j D pi

P
i
pi j D p j

9
>=

>;
: (15)

There is also a constraint on the average distance or cost
traveled given as

X

i

X

j
pi j ci j D C̄ : (16)

The model that is derived from the maximization of
Eq. (13) subject to Eqs. (15) and (16) is

pi j D KiKj pi p j exp(!# ci j) (17)

where Ki and Kj are normalization constants associated
with Eq. (15), and # is the parameter on the travel cost cij
between zones i and j associated with Eq. (16). It is easy to
compute Ki and Kj by substituting for pij from Eq. (17) in
Eq. (15) respectively and simplifying. This yields

Ki D 1P

j
K j p j exp(!! c i j)

Kj D 1P

i
K i p i exp(!! c i j)

9
>=

>;
; (18)

equations that need to be solved iteratively.
These models can be scaled to deal with real trips or

population simply by multiplying these probabilities by
the total volumes involved, T for total trips in a trans-
port system, P for total population in a city system, Y for
total income in a trading system and so on. This system
however forms the basis for a family of interaction mod-
els which can be generated by relaxing the normalization
constraints; for example by omitting the destination con-
straint, Kj D 1;8 j , or by omitting the origin constraint,

Ki D 1;8i or by omitting both where we need an ex-
plicit normalization constraint of the form

P
i j pi j D 1

in Eq. (14) to provide an overall constant K . Wilson [74]
refers to this set of four models as: doubly-constrained –
the model in Eqs. (17) and (18), the next two as singly-con-
strained, first when Ki D 1;8i , the model is origin con-
strained, and second when Kj D 1;8 j , the model is des-
tination constrained; and when we have no constraints on
origins or destinations, we need to invoke the global con-
stant K and the model is called unconstrained. It is worth
noting that these models can also be generated in nearly
equivalent form using random utility theory where they
are articulated at the level of the individual rather than
the aggregate trip-maker and are known as discrete choice
models [20].

Let us examine one of these models, a singly-con-
strained model where there are origin constraints. This
might be a model where we are predicting interactions
from work to home given we know the distribution of
work at the origin zones. Then noting that Kj D 1;8 j ,
the model is

pi j D Ki pi p j exp(!# ci j) D pi
p j exp(!# ci j)P
j
p j exp(!# ci j)

: (19)

The key issue with this sort of model is that not only are we
predicting the interaction between zones i and j but we can
predict the probability of locating in the destination zone
p0
j , that is

p0
j D

X

i

pi j D
X

i

pi
p j exp(!# ci j)P
j
p j exp(!# ci j)

: (20)

If we were to drop both origin and destination constraints,
the model becomes one which is analogous to the tradi-
tional gravity model from which it was originally derived
prior to the development of these optimization frame-
works. However to generate the usual standard gravita-
tional form of model in which the ‘mass’ of each origin
and destination zone appears, given by Pi and Pj respec-
tively, then we need to modify the entropy formula, thus
maximizing

H D !
X

i

X

j
pi j ln

pi j
Pi Pj

; (21)

subject to the normalization
X

i

X

j
pi j D 1 ; (22)
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and this time a constraint on the average ‘logarithmic’
travel cost lnC

X

i

X

j

pi j ln ci j D lnC : (23)

The model that is generated from this system can be writ-
ten as

pi j D K
PiPj
c"
i j
; (24)

where the effect of travel cost/distance is now in power law
form with $ the scaling parameter. Besides illustrating the
fact that inverse power forms as well as negative exponen-
tial distributions can be generated in this way according to
the form of the constraints, one is also able to predict both
the probabilities of locating at the origins and the destina-
tions from the traditional gravity model in Eq. (24).

Scaling, City Size, and Network Structure: Power Laws

Distance is a key organizing concept in city systems as we
have already seen in the way various urban distributions
have been generated. Distance is an attribute of nearness
or proximity to the most accessible places and locations.
Where there are the lowest distance or travel costs to other
places, themore attractive or accessible are those locations.
In this sense, distance or travel cost acts as an inferior good
in that we wish to minimize the cost occurred in overcom-
ing it. Spatial competition also suggests that the number
of places that have the greatest accessibilities are few com-
pared to the majority of places. If you consider that the
most accessible place in a circular city is the center, then
assuming each place is of similar size, as the number of
places by accessibility increases, the lower the accessibility
is. In short, there are many places with the same accessibil-
ity around the edge of the city compared to only one place
in the center. The population density model in Eq. (12)
implies such an ordering when we examine the frequency
distribution of places according to their densities.

If we now forget distance for a moment, then it is
likely that the distribution of places at whatever scale fol-
lows a distribution which declines in frequency with at-
tributes based on size due to competition. If we look at
all cities in a nation or even globally, there are far fewer
big cities than small ones. Thus the entropy-maximizing
framework that we have introduced to predict the proba-
bility (or frequency) of objects of a certain size occurring,
is quite applicable in generating such distributions.We de-
rived a negative exponential distribution in Eq. (10) but to
generate a power law, all we need to do is to replace the

constraint in Eq. (7) with its logarithmic equivalent, that is
X

i

pi ln Pi D ln P ; (25)

and then maximize Eq. (5) subject to (6) and (25) to give

pi D KP!'
i D exp(!ˇ ! 1) exp(!' ln Pi ) ; (26)

where ' is the scaling parameter. Equation (26) gives the
probability or frequency – the number of cities – for a zone
(or city) with Pi population which is distributed according
to an inverse power law. It is important to provide an in-
terpretation of the constraint which generates this power
law. Equation (25) implies that the system conserves the
average of the logarithm of size which gives greater weight
to smaller values of population than to larger, and as such,
is recognition that the average size of the system is un-
bounded as a power function implies. With such distribu-
tions, it is unlikely that normality will prevail due to the
way competition constrains the distribution in the long
tail. Nevertheless in the last analysis, it is an empirical
matter to determine the shape of such distributions from
data, although early research on the empirical distribu-
tions of city sizes following Zipf’s Law [81] by Curry [34]
and Berry [21] introduced the entropy-maximizing frame-
work to generate such size distributions.

The power law implied for the probability pi of a cer-
tain size Pi of city or zone can be easily generalized to
a two-dimensional equivalent which implies a network of
interactions. We will maximize the two-dimensional en-
tropy H in Eq. (13) subject to constraints on the mean
logarithm of population sizes at origins and destinations
which we now state as

P
i

P
j
pi j ln Pi D P

i
pi ln Pi D P̄origins

P
i

P
j
pi j ln Pj D P

j
p j ln Pj D P̄destinations

9
>=

>;
; (27)

where pi D P
j pi j and p j D P

i pi j . Note however that
there are no constraints on these origins and destination
probabilities pi and p j per se but the global constraints in
Eq. (14) must hold. This maximization leads to the model

pi j D KP!#i
i P!# j

j D P!#i
iP

i
P!#i
i

P!# j
j

P
j
P!# j
j

; (28)

where it is clear that the total flows from any origin node
or location i vary as

p0
i / P!#i

i ; (29)
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and the flows into any destination zone vary as

p0
j / P!# j

j ; (30)

with the parameters !i and ! j relating to the mean of the
observed logarithmic populations associated with the con-
straint Eq. (27). Note that the probabilities for each origin
and destination node or zone are independent from one
another as there is no constraint tying them together as
in the classic spatial interaction model where distance or
travel cost is intrinsic to the specification.

These power laws can be related to recent explorations
in network science which suggest that the number of in-
degrees – the volume of links entering a destination in our
terms – and the number of out-degrees – the volume em-
anating from an origin, both follow power laws [2]. These
results have been widely observed in topological rather
than planar networks where the focus is on the numbers
of physical links associated with nodes rather than the vol-
ume of traffic on each link. Clearly the number of physical
links in planar graphs is limited and the general finding
from network science that the number of links scales as
a power law cannot apply to systems that exist in two-di-
mensional Euclidean space [24]. However a popular way
of transforming a planar graph into one which is non-
planar is to invoke a rule that privileges some edges over
others merging these into long links and then generating
a topology which is based on the merged edges as consti-
tuting nodes and the links between the new edges as arcs.
This is the method that is called space syntax [47] and
it is clear that by introducing order into the network in
this way, the in-degrees and out-degrees of the resulting
topological graph can be scaling. Jiang [48] illustrates this
quite clearly although there is some reticence tomake such
transformations and where planar graphs have been ex-
amined using new developments in network science based
on small worlds and scale-free graph theory, the focus has
beenmuchmore on deriving new network properties than
on appealing to any scale-free structure [33].

However to consider the scale-free network properties
of spatial interaction systems, each trip might be consid-
ered a physical link in and of itself, albeit that it represents
an interaction on a physical network as a person making
such an interaction is distinct in space and time. Thus
the connections to network science are close. In fact the
study of networks and their scaling properties has not fol-
lowed the static formulations which dominate our study
of cities in equilibrium for the main way in which such
power laws are derived for topological networks is through
a process of preferential attachment which grows networks
from a small number of seed nodes [8]. Nevertheless, such

dynamics appear quite consistent with the evolution of
spatial interaction systems.

These models will be introduced a little later when ur-
ban dynamics are being dealt with. For the moment, let
us note that there are various simple dynamics which can
account not only for the distribution of network links fol-
lowing power laws, but also for the distribution of city
sizes, incomes, and a variety of other social (and phys-
ical) phenomena from models that grow the number of
objects according to simple proportionate growth consis-
tent with the generation of lognormal distributions. Suffice
it to say that although we have focused on urban densi-
ties as following either power laws or negative exponential
functions in this section, it is entirely possible to use the
entropy-maximizing framework to generate distributions
which are log-normal, another alternative with a strong
spatial logic. Most distributions which characterize urban
structure and activities however are not likely to be nor-
mal and to conclude this section, we will review albeit very
briefly, some empirical results that indicate the form and
pattern of urban activities in western cities.

Empirical Applications: Rank-Size Representations
of Urban Distributions
The model in Eq. (26) gives the probability of location in
a zone i as an inverse power function of the population
or size of that place which is also proportional to the fre-
quency

f (pi) / pi D KP!'
i : (31)

It is possible to estimate the scaling parameter ' in many
different ways but a first test of whether or not a power
law is likely to exist can be made by plotting the loga-
rithms of the frequencies and population sizes and noting
whether or not they fall onto a straight line. In fact a much
more preferable plot which enables each individual obser-
vation to be represented is the cumulative function which
is formed from the integral of Eq. (31) up to a given size;
that is Fi / P!'C1

i . The counter-cumulative F ! Fi where
F is the sum of all frequencies in the system – that is the
number of events or cities – also varies as P!'C1

i and is in
fact the rank of the city in question. Assuming each popu-
lation size is different, then the order of fig is the reverse of
the rank, andwe can nowwrite the rank r of i as r D F!Fi .
The equation for this rank-size distribution (which is the
one that is usually used to fit the data) is thus

r D GP!'C1
r (32)

where G is a scaling constant which in logarithmic form is
ln r D G ! (' ! 1) ln Pr . This is the equation that is im-
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plicit in the rank-size plots presented below which reveal
evidence of scaling.

First let us examine the scaling which is implicit in ur-
ban size distributions for the largest world city populations
over 1million in 2005, for cities over 100,000 in the USA in
2000, and for the 200 tallest buildings in the world in 2007.
We could repeat such examples ad nauseum but these pro-
vide a good selection which we graph in rank-size logarith-
mic form in Fig. 1a, noting that we have normalized all the
data by their means, that is by <Pr> and <r>, as Pr/<Pr>
and r/<r>. We are only examining a very small number
at the very top of the distribution and this is clearly not
definitive evidence of scaling in the rest of the distribu-
tion but these plots do show the typical distributions of
city size activities that have been observed in this field for
over 50 years. As we will imply later, these signatures are
evidence of self-organization and fractal structure which
emerge through competition from the bottom up [15].

To illustrate densities in cities, we take employment
and working population in small zones in Greater Lon-
don, a city which has some 4.4 million workers. We rank-
order the distribution in the same way we have done for
world cities, and plot these, suitably normalized by their
means, logarithmically in Fig. 1b. These distributions are
in fact plotted as densities so that we remove aerial size
effects. Employment densities ei D Ei /Ai can be inter-
preted as the number of work trips originating in employ-
ment zones ei D P

j Ti j – the volume of the out-degrees
of each employment zone considered as nodes in the graph
of all linkages between all places in the system, and popula-
tion densities hj D Pj/Aj as the destination distributions
hj D P

i Ti j – the in-degrees which measure all the trips
destined for each residential zone from all employment
zones. In short if there is linearity in the plots, this is evi-
dence that the underlying interactions on the physical net-
works that link these zones are scaling. Figure 1b provides
some evidence of scaling but the distributions are more
similar to lognormal distributions than to power laws. This
probably implies that the mechanisms for generating these
distributions are considerably more complex than growth
through preferential attachment which we will examine in
more detail below [15].

Lastly, we can demonstrate that scaling in city sys-
tems also exists with respect to how trips, employment
and population activities vary with respect to distance. In
Fig. 1c, we have again plotted the employment densities
ei D Ei /Ai at origin locations and population densities
hj D Pj/Aj at destination locations but this time against
distances dCBD!i and dCBD! j from the center of Lon-
don’s CBD in logarithmic terms. It is clear that there is
significant correlation but also a very wide spread of val-

Cities as Complex Systems: Scaling, Interaction, Networks, Dy-
namics and UrbanMorphologies, Figure 1
Scaling distributions in world cities and in Greater London

ues around the log-linear regression lines due to the fact
that the city is multi-centric. Nevertheless the relation-
ships appears to be scaling with these estimated as ei D
0:042d!0:98

CBD!i , (r
2 D !0:30), and hj D 0:029d!0:53

CBD! j ,
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 2
Employment, population and accessibilities in Greater London (greatest extent is 55kms east to west; 45kms north to south)

(r2 D !0:23). However more structured spatial relation-
ships can be measured by accessibilities which provide in-
dices of overall proximity to origins or destinations, thus
taking account of the fact that there are several compet-
ing centers. Accessibility can be measured in many differ-
ent ways but here we use a traditional definition of poten-
tial based on employment accessibility Ai to populations
at destinations, and population accessibility Aj to employ-
ment at origins defined as

Ai / P
j

h j
c i j

A j / P
i

e i
c i j

9
>=

>;
; (33)

where cij is, as before, the generalized cost of travel
from employment origin i to population destination j. In
Fig. 2a, b, we compare the distribution of employment
densities ei with accessibility origins Ai and in Fig. 2c, d,
population densities hj with accessibility destinations Aj.
Each set of maps is clearly correlated with higher asso-
ciations than in Fig. 1c which take account of only the
single CBD. Regressing fln eig on flnAig and fln p jg on
flnAjg gives an approximate scaling with 31% of the vari-
ance accounted for in terms of origin accessibility and 41%
for destination accessibility. These relations appear linear
but there is still considerable noise in the data which un-
doubtedly reflects the relative simplicity of the models and



Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and Urban Morphologies C 1053

the fact that accessibility is being measured using current
transport costs without any reference to the historical evo-
lution of the city’s structure. It is, however, building blocks
such as these that constitute the basis for operational land
use transport models that have developed for comparative
static and quasi-dynamic forecasting that we will discuss
below.

Urban Dynamics

Aggregate Development

Models of city systems have largely been treated as static
for at first sight, urban structure in terms of its form and
to some extent its function appears stable and long-lasting.
During the industrial era, cities appeared to have a well-
defined structure where land uses were arranged in con-
centric rings according to their productivity and wealth
around a central focus, usually the central business district
(CBD), the point where most cities were originally located
and exchange took place. Moreover data on how cities had
evolved were largely absent and this reinforced the focus
on statics and equilibria.Where the need to examine urban
change was urgent, models were largely fashioned in terms
of the simplest growth dynamics possible and we will be-
gin with these here.

The growth of human populations in their aggregate
appears to follow an exponential law where the rate of
change % is proportional to the size of the population it-
self P(t), that is

dP(t)
dt

D %P(t) : (34)

It is easy to show that starting from an initial population
P(0), the growth is exponential, that is

P(t) D P(0) exp(% t) ; (35)

which is the continuous form of model. When formulated
discretely, at time steps t D 1; 2; : : : ; T , Eq. (34) can be
written as P(t) ! P(t ! 1) D ˇP(t ! 1) which leads to

P(t) D (1 C ˇ)P(t ! 1) : (36)

Through time from the initial condition P(0), the trajec-
tory is

P(t) D (1 C ˇ)tP(0) : (37)

1 C ˇ is the growth rate. If ˇ > 0, Eq. (37) shows expo-
nential growth, if ˇ < 0, exponential decline, and if ˇ D 0,
the population is in the steady state and simply reproduces
itself.

This simple growth model leads to smooth change, and
any discontinuities or breaks in the trajectories of growth
or decline must come about through an external change
in the rate from the outside environment. If we assume
the growth rate fluctuates around a mean of one with ˇ
varying randomly, above ! 1, then it is not possible to
predict the trajectory of the growth path. However if we
have a large number of objects which we will assume to
be cities whose growth rates are chosen randomly, then we
can write the growth equation for each city as

Pi (t) D [1 C ˇi(t)]Pi (t ! 1) ; (38)

which from an initial condition Pi (0) gives

Pi (t) D
tY

$D1
[1 C ˇi(&)]Pi (0) : (39)

This is growth by proportionate effect; that is, each city
grows in proportion to its current size but the growth rate
in each time period is random. In a large system of cities,
the ultimate distribution of these population sizes will be
lognormal. This is easy to demonstrate for the logarithm
of Eq. (39) can be approximated by

ln Pi (t) D ln Pi (0) C
tX

$D1
ˇi(&) ; (40)

where the sum of the random components is an approx-
imation to the log of the product term in Eq. (39) us-
ing Taylor’s expansion. This converges to the lognormal
from the law of large numbers. It was first demonstrated
by Gibrat [43] for social systems but is of considerable in-
terest here in that the fat tail of the lognormal can be ap-
proximated by an inverse power law. This has become the
default dynamicmodel which underpins an explanation of
the rank-size rule for city populations first popularized by
Zipf [81] and more recently confirmed by Gabaix [41] and
Blank and Solomon [23] among others. We demonstrated
this in Fig. 1a for the world city populations greater than 1
million and for US city populations greater than 100,000.
As such, it is the null hypothesis for the distribution of ur-
ban populations in individual cities as well as population
locations within cities.

Although Gibrat’s model does not take account of in-
teractions between the cities, it does introduce diversity
into the picture, simulating a system that in the aggregate
is non-smooth but nevertheless displays regularity. These
links to aggregate dynamics focus on introducing slightly
more realistic constraints and one that is of wide relevance
is the introduction of capacity constraints or limits on the
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level to which a population might grow. Such capacitated
growth is usually referred to as logistic growth. Retaining
the exponential growth model, we can limit this by mod-
erating the growth rate % according to an upper limit on
population Pmax which changes the model in Eq. (34) and
the growth rate % to

dP(t)
dt

D
!
%

"
1 ! P(t)

Pmax

#$
P(t) : (41)

It is clear that when P(t) D Pmax, the overall rate of change
is zero and no further change occurs. The continuous ver-
sion of this logistic is

P(t) D Pmax

1 C
%
Pmax
P(0) ! 1

&
exp(!% t)

; (42)

where it is easy to see that as t ! 1, P(t) ! Pmax.
The discrete equivalent of this model in Eq. (41) fol-

lows directly from P(t) ! P(t ! 1) D ˇ[1 ! (P(t ! 1)/
Pmax)]P(t ! 1) as

P(t) D
!
1 C ˇ

"
1 ! P(t ! 1)

Pmax

#$
P(t ! 1) ; (43)

where the long term dynamics is too intricate to write out
as a series. Equation (43) however shows that the growth
component ˇ is successively influenced by the growth of
the population so far, thus preserving the capacity limit
through the simple expedient of adjusting the growth rate
downwards. As in all exponential models, it is based on
proportionate growth. As we noted above, we can make
each city subject to a random growth component ˇi (t)
while still keeping the proportionate effect.

P(t) D
!
1 C ˇi(t)

"
1 ! P(t ! 1)

Pmax

#$
P(t ! 1) : (44)

This model has not been tested in any detail but if ˇi(t) is
selected randomly, the model is a likely to generate a log-
normal-like distribution of cities but with upper limits be-
ing invoked for some of these. In fact, this stochastic equiv-
alent also requires a lower integer bound on the size of
cities so that cities do not become too small [14]. Within
these limits as long as the upper limits are not too tight,
the sorts of distributions of cities that we observe in the
real world are predictable.

In the case of the logistic model, remarkable and un-
usual discontinuous nonlinear behavior can result from its
simple dynamics. When the ˇ component of the growth
rate is ˇ < 2, the predicted growth trajectory is the typical
logistic which increases at an increasing rate until an in-

flection point after which the growth begins to slow, even-
tually converging to the upper capacity limit of Pmax. How-
ever when ˇ Š 2, the population oscillates around this
limit, bifurcating between two values. As the value of the
growth rate increases towards 2.57, these oscillations get
greater, the bifurcations doubling in a regular but rapidly
increasing manner. At the point where ˇ Š 2:57, the oscil-
lations and bifurcations become infinite, apparently ran-
dom, and this regime persists until ˇ Š 3 during which
the predictions look entirely chaotic. In fact, this is the
regime of ‘chaos’ but chaos in a controlled manner from
a deterministic model which is not governed by externally
induced or observed randomness or noise.

These findings were found independently byMay [52],
Feigenbaum [38], Mandelbot [51] among others. They re-
late strongly to bifurcation and chaos theory and to frac-
tal geometry but they still tend to be of theoretical impor-
tance only. Growth rates of this magnitude are rare in hu-
man systems although there is some suggestion that they
might occur in more complex coupled biological systems
of predator-prey relations. In fact one of the key issues in
simulating urban systems using this kind of dynamics is
that although these models are important theoretical con-
structs in defining the scope of the dynamics that define
city systems, much of these dynamic behaviors are sim-
plistic. In so far as they do characterize urban systems, it
is at the highly aggregate scale as we demonstrate a little
later. The use of these ideas in fact is much more applica-
ble to extending the static equilibrium models of the last
section and to demonstrate these, we will now illustrate
how these models might be enriched by putting together
logistic behaviors with spatial movement and interaction.

One way of articulating urban dynamics at the intra-
urban level is to identify different speeds of change. In par-
ticular we can define a fast dynamics that relates to how
people might move around the city on daily basis, for ex-
ample, in terms of the journey to work, and a slower dy-
namics that relates to more gradual change that relates to
the size of different locations affected by residential migra-
tions. We can model the fast dynamics using a singly-con-
strained spatial interaction which distributes workers to
residential locations which we define using previous nota-
tion where all variables are now time scripted by (t): Ti j(t)
trips between zones i and j, employment Ei (t) at origin
zone i, population Pj(t) at destination zone j, the friction
of distance parameter # (t), and the travel cost ci j(t) be-
tween zones i and j. The model is defined as

Ti j(t) D Ei (t)
Pj(t) exp[!# (t)ci j(t)]P
j
Pj(t) exp[!# (t)ci j(t)]

; (45)
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from which we can predict residential population P0
j(t) as

P0
j(t) D

X

i
Ti j(t)

D
X

i
Ei (t)

Pj(t) exp[!# (t)ci j(t)]P
j
Pj(t) exp[!# (t)ci j(t)]

: (46)

This is the fast dynamics but each zone is capacitated by
an unchanging upper limit on population where the zonal
population changes slowly in proportion to its existing size
through internal migration and in response to the upper
limit Pjmax. The change in terms of this slower dynamic
from t to t C 1 is modeled as

'Pj(t C 1) D ˇ[Pjmax ! P0
j(t)]P

0
j(t) (47)

with the long term trajectory thus given as

Pj(t C 1) D
%
1 C ˇ[Pjmax ! P0

j(t)]
&
P0
j(t) : (48)

Clearly Pj(t) will converge to Pjmax as long as P0
j(t) is in-

creasing while the fast dynamics is also updated in each
successive time period from

P0
j(t C 1) D

X

i

Ti j(t C 1)

D
X

i

Ei (tC1)
Pj(t C 1) exp[!# (t C 1)ci j(t C 1)]
P
j
Pj(t C 1) exp[!# (t C 1)ci j(t C 1)]

:

(49)

We may have an even slower dynamics relating to techno-
logical or other social change which changes Pjmax while
various other models may be used to predict employment
for example, which itself may be a function of another
fast dynamics relating to industrial and commercial inter-
actions. The time subscripted variables travel ci j(t C 1)
and the friction of distance parameter # (t C 1) might
be changes that reflect other time scales. We might even
have lagged variables independently introduced reflecting
stocks or flows at previous time periods t ! 1, t ! 2 etc.
Wilson [75,76] has explored links between these spatial in-
teraction entropy-maximizing models and logistic growth
and has shown that in a system of cities or zones within
a city, unusual bifurcating behavior in terms of the emer-
gence of different zonal centers can occur when parameter
values, particularly the travel cost parameter # (tC1), cross
certain thresholds.

There have been many proposals involving dynamic
models of city systems which build on the style of nonlin-
ear dynamics introduced here and these all have the po-
tential to generate discontinuous behavior. Although Wil-
son [75] pioneered embedding dynamic logistic change

into spatial interaction models, there have been impor-
tant extensions to urban predator-prey models by Den-
drinos and Mullaly [36] and to bifurcating urban systems
by Allen [3,4], all set within a wider dynamics linking
macro to micro through master equation approaches [45].
A good summary is given by Nijkamp and Reggiani [57]
but most of these have not really led to extensive empiri-
cal applications for it has been difficult to find the neces-
sary rich dynamics in the sparse temporal data sets avail-
able for cities and city systems; at the macro-level, a lot of
this dynamics tends to be smoothed away in any case. In
fact, more practical approaches to urban dynamics have
emerged at finer scale levels where the agents and activi-
ties are more disaggregated and where there is a stronger
relationship to spatial behavior.We will turn to these now.

Dynamic Disaggregation: Agents and Cells

Static models of the spatial interaction variety have been
assembled into linked sets of sub-models, disaggregated
into detailed types of activity, and structured so that they
simulate changes in activities through time. However, the
dynamics that is implied in such models is simplistic in
that the focus has still been very much on location in
space with time added as an afterthought. Temporal pro-
cesses are rarely to the forefront in such models and it is
not surprising that a more flexible dynamics is emerging
from entirely different considerations. In fact, the mod-
els of this section come from dealing with objects and in-
dividuals at much lower/finer spatial scales and simulat-
ing processes which engage them in decisions affecting
their spatial behavior. The fact that such decisions take
place through time (and space) makes them temporal and
dynamic rather through the imposition of any predeter-
mined dynamic structures such as those used in the aggre-
gate dynamicmodels above. The models here deal with in-
dividuals as agents, rooted in cells which define the space
they occupy and in this sense, are highly disaggregate as
well as dynamic. These models generate development in
cities from the bottom up and have the capability of pro-
ducing patterns which are emergent. Unlike the dynamic
models of the last section, their long term spatial behavior
can be surprising and often hard to anticipate.

It is possible however to use the established nota-
tion for equilibrium models in developing this framework
based on the generic dynamic Pi (t) D Pi (t ! 1) C 'Pi (t)
where the change in population 'Pi (t) can be divided
into two components. The first is the usual proportion-
ate effect, the positive feedback induced by population on
itself which is defined as the reactive element of change
!Pi(t ! 1). The second is the interactive element, change
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that is generated from some action-at-a-distance which is
often regarded as a diffusion of population from other lo-
cations in the system. We can model this in the simplest
way using the traditional gravitymodel in Eq. (24) but not-
ing that we must sum the effects of the diffusion over the
destinations from where it is generated as a kind of acces-
sibility or potential. The second component of change is
(Pi(t ! 1)K

P
j Pj(t ! 1)/c"

i j from which the total change
between t and t ! 1 is

'Pi (t) D !Pi(t!1)C(Pi (t!1)K
X

j

Pj(t ! 1)
c"
i j

C"i(t!1):

(50)

We have also added a random component "i(t ! 1) in the
spirit of our previous discussion concerning growth rates.
We can now write the basic reaction-diffusion equation, as
it is sometimes called, as

Pi (t)
D Pi (t ! 1) C 'Pi (t)

D Pi (t ! 1)

0

@1 C ! C (K
X

j

Pj(t ! 1)
c"
i j

C "i(t ! 1)

1

A :

(51)

This equation looks as though it applies to a zonal sys-
tem but we can consider each index i or j simply a marker
of location, and each population activity can take on any
value; for single individuals it can be 0 or 1 while it might
represent proportions of an aggregate population or total
numbers for the framework is entirely generic. As such, it
is more likely to mirror a slow dynamics of development
rather than a fast dynamics of movement although move-
ment is implicit through the diffusive accessibility term.

We will therefore assume that the cells are small
enough, space-wise, to contain single activities – a single
household or land use which is the cell state – with the cel-
lular tessellation usually forming a grid associated with the
pixel map used to visualize data input and model output.
In terms of our notation, population in any cell i must be
Pi (t) D 1 or 0, representing a cell which is occupied or
empty with the change being'Pi (t) D !1 or 0 if Pi (t!
1) D 1 and 'Pi (t) D 1 or 0 if Pi(t ! 1) D 0. These
switches of state are not computed by Eq. (51) for the way
these cellular variants are operationalized is through a se-
ries of rules, constraints and thresholds. Although consis-
tent with the generic model equations, these are applied in
more ad hoc terms. Thus these models are often referred
to as automata and in this case, as cellular automata (CA).

The next simplification which determines whether or
not a CA follows a strict formalism, relates to the space
over which the diffusion takes place. In the fast dynamic
equilibrium models of the last section and the slower ones
of this, interaction is usually possible across the entire
space but in strict CA, diffusion is over a local neighbor-
hood of cells around i, ˝i , where the cells are adjacent.
For symmetric neighborhoods, the simplest is composed
of cells which are north, south, east and west of the cell in
question, that is ˝i D n; s; e;w – the so-called von Neu-
mann neighborhood, while if the diagonal nearest neigh-
bors are included, then the number of adjacent cells rises
to 8 forming the so-called Moore neighborhood. These
highly localized neighborhoods are essential to processes
that grow from the bottom up but generate global pat-
terns that show emergence. Rules for diffusion are based
on switching a cell’s state on or off, dependent upon what
is happening in the neighborhood, with such rules being
based on counts of cells, cell attributes, constraints onwhat
can happen in a cell, and so on.

The simplest way of showing how diffusion in local-
ized neighborhoods takes place can be demonstrated by
simplifying the diffusion term in Eq. (50) as follows. Then
(K

P
j Pj(t ! 1) D (K

P
j Pj(t ! 1)c!"

i j as ci j D 1 when
˝i D n; s; e;w. The cost is set as a constant value as each
cell is assumed to be small enough to incur the same (or
no) cost of transport between adjacent cells. Thus the dif-
fusion is a count of cells in the neighborhood i. The overall
growth rate is scaled by the size of the activity in i but this
activity is always either Pi (t ! 1) D 1 or 0, presence or
absence. In fact this scaling is inappropriate in models that
work by switching cells on and off for it is only relevant
when one is dealing with aggregates. This arises from the
way the generic equation in (51) has been derived and in
CA models, it is assumed to be neutral. Thus the change
Eq. (50) becomes

'Pi (t) D ! C (K
X

j
Pj(t ! 1) C "i(t) ; (52)

where this can now be used to determine a threshold Zmax
over which the cell state is switched. A typical rule might
be

Pi (t) D

8
<

:

1; if [! C (K
P
j
Pj(t ! 1) C "i(t)] > Zmax

0; otherwise :
(53)

It is entirely possible to separate the reaction from the dif-
fusion and consider different combinations of these effects
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sparking off a state change. As we have implied, different
combinations of attributes in cells and constraints within
neighborhoods can be used to effect a switch, much de-
pending on the precise specification of the model.

In many growth models based on CA, the strict lim-
its posed by a local neighborhood are relaxed. In short,
the diffusion field is no longer local but is an information
or potential field consistent with its use in social physics
where action-at-distance is assumed to be all important. In
the case of strict CA, it is assumed that there is no action-
at-a-distance in that diffusion only takes place to physi-
cally adjacent cells. Over time, activity can reach all parts
of the system but it cannot hop over the basic cell unit.
In cities, this is clearly quite unrealistic as the feasibility
of deciding what and where to locate does not depend on
physical adjacency. In terms of applications, there are few
if any urban growth models based on strict CA although
this does rather beg the question as to why CA is being
used in the first place. In fact it is more appropriate to call
such models cell-space or CS models as Couclelis [32] has
suggested. In another sense, this framework can be consid-
ered as one for agent-based modeling where the cells are
not agents and where there is no assumption of a regular
underlying grid of cells [12,13]. There may be such a grid
but the framework simply supposes that the indices i and
j refer to locations that may form a regular tessellation but
alternatively may be mobile and changing. In such cases, it
is often necessary to extend the notation to deal with spe-
cific relations between the underlying space and the loca-
tion of each agent.

Empirical Dynamics: Population Change and City Size

We will now briefly illustrate examples of the models in-
troduced in this section before we then examine the con-
struction of more comprehensive models of city systems.
Simple exponential growth models apply to rapidly grow-
ing populations which are nowhere near capacity limits
such as entire countries or the world. In Fig. 3, we show the
growth of world population from 2000 BCE to date where
it is clear that the rate of growth may be faster than the
exponential model implies, although probably not as fast
as double exponential. In fact world population is likely
to slow rapidly over the next century probably mirror-
ing global resource limits to an extent which are clearly
illustrated in the growth of the largest western cities. In
Figs. 4a, b, we show the growth in population of New York
City (the five boroughs) and Greater London from 1750
to date and it is clear that in both cases, as the cities de-
veloped, population grew exponentially only to slow as the
upper density limits of each city were reached.

Cities as Complex Systems: Scaling, Interaction, Networks, Dy-
namics and UrbanMorphologies, Figure 3
Exponential world population growth. The fitted exponential
curve is shown in grey where for the most part it is coincident
with the observed growth, except for the very long period be-
fore the Industrial Revolution (before 1750)

Subsequent population loss and then a recent return
of population to the inner and central city now dominate
these two urban cores, which is reminiscent of the sorts
of urban dynamic simulated by Forrester [39] where vari-
ous leads and lags in the flow of populations mean that the
capacity limit is often overshot, setting up a series of oscil-
lations which damp in the limit. Forrester’s model was the
one of the first to grapple with the many interconnections
between stocks and flows in the urban economy although
these relationships were predicated hypothetically in sim-
ple proportionate feedback terms. Together they gener-
ated a rich dynamics but dominated by growth which was
capacitated, thus producing logistic-like profiles with the
leads and lags giving damped oscillations which we illus-
trate from his work in Fig. 5 [11]. We will see that the
same phenomena can be generated from the bottom up as
indeed Forrester’s model implies, using cellular automata
within a bounded spatial system.

Dynamics which arise from bottom-up urban pro-
cesses can be illustrated for a typical CA/CSmodel, DUEM
(Dynamic Urban Evolutionary Model) originally devel-
oped by Xie [78]. In the version of the model here,
there are five distinct land uses – housing, manufactur-
ing/primary industry, commerce and services, transport in
the form of the street/road network, and vacant land. In
principle, at each time period, each land use can generate
quantities and locations of any other land use although in
practice only industry, commerce and housing can gener-
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 4
Logistic population growth

Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 5
Oscillating capacitated growth in a version of the Forrester Urban Dynamicsmodel (from [11])

ate one another as well as generating streets. Streets do not
generate land uses other than streets themselves. Vacant
land is regarded as a residual available for development
which can result from a state change (decline) in land use.
The way the generation of land uses takes place is through
a rule-based implementation of the generic Eq. (51) which
enables a land use k; Pk

i (t), to be generated from any other
land use `; P`j (t ! 1). Land uses are also organized across
a life cycle from initiating through mature to declining.
Only initiating land uses which reflect their relative new-
ness can spawn new land use. Mature remain passive in

these terms but still influence new location while declin-
ing land uses disappear, thus reflecting completion of the
life cycle of built form.

We are not able to present the fine details of the model
here (see Batty, Xie and Sun [19], and Xie and Batty [79])
but we can provide a broad sketch. The way initiating land
uses spawn new ones is structured according to rule-based
equations akin to the thresholding implied in Eq. (53). In
fact, there are three spatial scales at which these thresh-
olds are applied ranging from themost local neighborhood
through the district to the region itself. The neighborhood
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exercises a trigger for new growth or decline based on the
existence or otherwise of the street network, the district
uses the densities of related land uses and distance of the
new land use from the initiating use to effect a change,
while the region is used to implement hard and fast con-
straints on what cells are available or not for development.
Typically an initiating land use will spawn a new land use
in a district only if the cells in question are vacant and if
they are not affected by some regional constraint on de-
velopment with these rules being implemented first. The
probability of this land use occurring in a cell in this dis-
trict is then fixed according to its distance from the ini-
tiating location. This probability is then modified accord-
ing to the density of different land uses that exist around
each of these potential locations – using compatibility con-
straints – and then in the local neighborhood, the density
of the street network is examined. If this density is not suf-
ficient to support a new use, the probability is set equal to
zero and the cell in question does not survive this process
of allocation. At this point, the cell state is switched from
‘empty’ or ‘vacant’ to ‘developed’ if the random number
drawn is consistent with the development probability de-
termined through this process.

Declines in land use which are simply switches from
developed to vacant in terms of cell state are produced
through the life cycling of activities. When a mature land
use in a cell reaches a certain age, it moves into a one pe-
riod declining state and then disappears at the end of this
time period, the cell becoming vacant. Cells remain vacant
for one time period before entering the pool of eligible lo-
cations for new development. In the model as currently
constituted, there is no internal migration of activities or
indeed anymutation of uses but these processes are intrin-
sic to the model structure and have simply not been in-
voked. The software for this model has been written from
scratch in Visual C++ with the loosest coupling possible
to GIS through the import of raster files in different pro-
prietary formats. The interface we have developed, shown
below, enables the user to plant various land use seeds into
a virgin landscape or an already developed system which
is arranged on a suitably registered pixel grid which can
be up to 3K x 3K or 9 million pixels in size. A map of this
region forms the main window but there are also three re-
lated windows which show the various trajectories of how
different land uses change through time with the map and
trajectories successively updated in each run.

A feature which is largely due to the fact that the model
can be run quickly through many time periods, is that the
system soon grows to its upper limits with exponential
growth at first which then becomes logistic or capacitated.
In Fig. 6, we show how this occurs from planting a random

selection of land use seeds in the region and then letting
these evolve until the system fills. Because there are lags in
the redevelopment of land uses in the model due to the life
cycle effects, as the system fills, land is vacated. This in-
creases the space available for new development leading
to oscillations of the kind reflected in Forrester’s model
shown in Fig. 5 and more controversially in the real sys-
tems shown for New York City and Greater London in
Fig. 4. In this sense, a CA model has a dynamics which is
equivalent to that of the more top-down dynamics where
growth ismodeled by exponential or logistic functions. CA
models however generate this as an emergent phenomena
from the bottom up.

Our last demonstration of CA really does generate
emergent phenomena. This is a model of residentialmove-
ment that leads to extreme segregation of a population
classified into two distinct groups which we will call red
R and green G. Let us array the population on a square
grid of dimension 51 x 51 where we place an R person
next to a G person in alternate fashion, arranging them in
checker board style as in Fig. 7a. The rule for being satis-
fied with one’s locational position viz a viz one’s relation-
ship to other individuals is as follows: persons of a different
group will live quite happily, side by side with each other,
as long as there are as many persons of the same persua-
sion in their local neighborhood. The neighborhood in this
instance is the eight cells that surround a person on the
checkerboard in the n, s, e, w, and nw, se, sw, and ne po-
sitions. If however a person finds that the persons of the
opposing group outnumber those of their own group, and
this would occur if there were more than 4 persons of the
opposite persuasion, then the person in question would
change their allegiance. In other words, they would switch
their support to restore their own equilibrium which en-
sures that they are surrounded by at least the same number
of their own group. There is a version of this model that is
a little more realistic in which a person would seek another
location –move – if this condition were not satisfied rather
than change their support, but this is clearly not possible
in the completely filled system that we have assumed; we
will return to this slightly more realistic model below.

In Fig. 7a, the alternative positioning shown in the
checker board pattern meets this rule and the locational
pattern is in ‘equilibrium’: that is, no one wants to change
their support to another group. However let us suppose
that just six persons out of a total of 2601 (51 x 51 agents
sitting on the checker board) who compose about 0.01 per-
cent of the two populations, change their allegiance. These
six changes are easy to see in Fig. 7a where we assume that
four R persons of the red group, change in their allegiance
to support the green group, and two Gs change the op-
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 6
Cellular growth using the DUEMmodel
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 7
Emergent segregation: A fragile equality (a) gives way to segregation (b); A randommix with available space (c) gives way to segre-
gation (d)

posite way. What then happens is the equilibrium is up-
set in these locations but instead of being quickly restored
by local changes, this sets off a mighty unraveling which
quickly changes the locational complexion of the system
to one where the Rs are completely and utterly segregated
from the Gs. We show this in Fig. 7b. From a situation
where everyone was satisfied and mixed completely, we
get dramatic segregation which is a most unusual conse-
quence. At first sight, one would never imagine that with
so mild a balance of preferences, such segregation would
take place. The ultimate pattern implies that Rs will live
nowhere near Gs unless they really have to and there is

nowhere else to live and vice versa. If an R or a G could
not tolerate more than one person of a different kind living
near them, then such segregation would be understand-
able but this is not the case: Rs are quite content to live in
harmony with Gs as long as the harmony is equality.

This model was first proposed more than 30 years by
Schelling [61,62]. In fact we can make this a little more re-
alistic if we provide some free space within the system. In
this case, we assume that 1/3 of the lattice is empty of per-
sons of any kind, 1/3 composed of Rs, and 1/3 of Gs, and
wemix these randomly as we show in Fig. 7c. Now the rule
is slightly different in that if there aremore opposition per-
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sons around a person of one persuasion, then that person
will try to move his or her location to a more preferen-
tial position. This sets up a process of shuffling around the
checker board but as we show in Fig. 7d, quite dramatic
shifts take place in location which leads to the segrega-
tion shown. This is the kind of effect that takes place in
residential areas in large cities where people wish to sur-
round themselves with neighbors of their own kind. What
is surprising about the phenomena which makes it ‘emer-
gent’ is that for very mild preferential bias, dramatic seg-
regation can take place. Of course if the preferences for
like neighbors are very strong anyway, then segregation
will take place. But in reality, such preferences are usu-
ally mild rather than strong, yet extreme segregation takes
place anyway. The conclusion is that cities often lookmore
segregated around racial and social lines than the attitudes
of their residents might suggest.

Comprehensive SystemModels of Urban Structure

Integrated Land Use Transport Models

The various components used to model cities in equi-
librium were quickly assembled into structures that at-
tempted to simulate urban structure and growth from the
1960s onwards. These models were referred to as land use
transport models in that their aimwas to simulate the loca-
tions of different land uses and their consequent patterns
of traffic generation, usually according to spatial interac-
tion principles based on gravitational assumptions. But
they usually represented cities as demographic and eco-
nomic activities – population, households, employment
and so on – rather than as residential, commercial or in-
dustrial land use. In short the city system was seen to op-
erate at the level of the location of activities which then
consumed space through land use from which traffic was
generated, and once urban activities and their interactions
were predicted, appropriate translations were made into
land use. As we shall see, this is not as unproblematic as
was originally thought.

The integration of urban activities and their interac-
tions – land use and transport – can be accomplished us-
ing a variety of economic frameworks built around eco-
nomic relationships between activities. Traditionally these
have been represented as input-output models where one
activity is linked to another and it is possible to predict
the chain of linkages between all the activities using multi-
pliers. We will illustrate this for two activities: we assume
that employment E is divided into an unpredictable com-
ponent, sometimes considered as employment that is basic
B and export orientated in the economy, and employment
that is non-basic S where E D B C S. Non-basic employ-

ment services the population P from which it is derived
as S D bP. If we then consider that population can be
generated by applying an activity rate a to employment as
P D aE, we have the rudiments of a generative sequence
that forms a structure for predicting activities and their lo-
cations which are highly interdependent. Simple manipu-
lation of these relationships shows that E D B(1 ! ba)!1

where (1 ! ba)!1 is the multiplier central to traditional
macro-economic theory.

If we now consider that employment and population
are related spatially through their interactions, we model
the relationship between employment as population using
a singly-constrained sub-model

Pj D a
X

i
Ti j D a

X

i
Ei

Fj c! 
i j

P
k Fkc

! 
i k

; (54)

where Ti j are work trips between i and j, Fj is some mea-
sure of attraction at residential location j, and  is the
friction of distance/travel cost parameter. Employment is
modeled in reverse direction as

Ei D b
X

j

S ji D b
X

j

Pj
Fi c!$

jiP
k Fkc!$

ki
; (55)

where Sji are employment demands in j from i, Fi is some
measure of attraction at residential location i, and$ is the
friction of distance/travel cost parameter. These two equa-
tions for the two sectors are not usually solved simulta-
neously but the chain is broken in that we start with ba-
sic employment B in Eq. (54), predicting basic population,
then using this basic population in Eq. (55) to produce an
increment of non-basic employment which in turn is used
to predict the next increment of non-basic population in
Eq. (54). This iteration converges to the multiplier rela-
tionships E D B(1 ! ba)!1 and P D bB(1 ! ba)!1.

This kind of sequence can be disaggregated indefinitely
with respect to population and employment types and
linked demands to other sectors. Education, leisure and
so on can be added to the framework making the model
ever more comprehensive. This was the model first devel-
oped by Lowry [50]. It is still the most widely applied of
all operational urban models and has been elaborated in
various ways, some of them dealing with partial dynam-
ics [11]. Their theoretical pedigree is rooted largely in re-
gional economics, location theory and the new urban eco-
nomics which represent the spatial equivalents of classi-
cal macro andmicro economics. Themost coherent recent
statement in this vein is based on applications of trade the-
ory to the urban economy as reflected in the work of Fujita,
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Krugman and Venables [40] but there is a long heritage of
empirical models in the Lowry [50] tradition which con-
tinue to be built [71].

These models now incorporate the four-stage trans-
portation modeling process of trip generation, distribu-
tion, modal split and assignment explicitly and they are
consistent with discrete choice methods based on utility
maximizing in their simulation of trip-making [20]. They
have been slowly adapted to simulate dynamic change al-
though they still tend to generate the entire activity pattern
of the city in one go, and they remain parsimonious in that
the assumption is that all the outcomes from the model

Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 8
Visualization of outputs from a Greater London land use transport model

can be tested in terms of their goodness of fit. They have
also become more disaggregate and there are now links to
physical land use although they still remain at the level of
activity allocation despite their nomenclature as land use
transport models. In short, this class of models is the most
operational in that newer styles tend to be less comprehen-
sive in their treatment of urban activities and transporta-
tion. Probably the most highly developed of these models
currently is the UrbanSim model [69] although the ME-
PLAN, TRANUS and IRPUD models, whose most recent
versions were developed in the EU Propolis [60] project,
also represent the state-of-the-art.
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To conclude this section, it is worth showing a visual-
ization from one of these land use transport models which
we have recently built for the London region as part of an
integrated assessment of climate change in the metropolis.
The component we show is a residential location model
which predicts the flow of workers from employment lo-
cations to residential areas using four different modes of
transport and disaggregated into five employment and five
household types. In Fig. 8a, we show some outputs from
the model – the observed employment distribution, the
pattern of population density, and total work trips from
the airport (Heathrow) zone in the base year simulation
2005. This kind of model assumes that employment and
the travel cost network are exogenously determined and
thus ‘what-if’ style questions can be thrown at the model
to be evaluated in terms of the impact of changes in the
transport network and employment volumes on the loca-
tion of population. We illustrate such a scenario builder
for changes in the transport routes and costs in Fig. 8b
which provides some sense of how such complexity can
be visualized. These are key issues in planning policy for
the future growth of London, particularly with respect to
flooding in the Thames Estuary which is likely to be af-
fected by climate change. These kinds of models are hardly
routine but they are being developed now in many places.

Agent-Based and Cellular Automata Models
of Land Development

The first bottom-up CA models applicable to urban struc-
ture and growth can be traced back to the 1960s. Chapin
and Weiss [27] used cell-space (CS) simulation whose lo-
cational attractions were based on linear regression, in
their models of urban growth in Greensboro, North Car-
olina. Lathrop and Hamburg [49] used gravitational mod-
els to effect the same in simulating growth in the Buffalo-
Niagara region while from a rather different perspective,
Tobler [65] used CA-like simulation to generate a movie
of growth in the Detroit region. All these applications were
on the edge of the mainstream which 30 years ago was
based not on formal dynamics but on cross-sectional equi-
libriummodels of the variety presented above. In the inter-
vening years, CA insofar as it was considered a simulation
tool, was regarded as important mainly for its pedagogic
and analytical value [32]. It was not until the early 1990s
that models began to emerge which were considered to be
close enough to actual urban growth patterns to form the
basis for simulation and prediction. In fact, there still ex-
ists a recurrent debate about whether or not CA models
are more important for their pedagogic value rather than
for their abilities to simulate real systems. These require

gross simplifications of model processes and spatial units,
sometimes rendering them further from reality than the
static cross-sectional models that came before.

The three earliest attempts at such modeling were
geared to simulating rapid urban growth for metropolitan
regions, medium-sized towns, and suburban areas. Batty
and Xie [18] developed simulations of suburban residen-
tial sprawl in Amherst, New York, where a detailed space-
time series of development was used to tune the model.
Clarke and Gaydos [31] embarked on a series of simula-
tions of large-scale metropolitan urban growth in the Bay
Area and went on to model a series of cities in the US
in the Gigalopolis project. White and Engelen [72] devel-
oped a CA model for Cincinnati from rather crude tem-
poral land use data and in all these cases, the focus was
on land development, suburbanization, and sprawl. Since
then, several other groups have developed similar mod-
els focusing on suburbanization in Australian cities [70],
‘desakota’ – rapid urban growth in rural areas in China –
specifically in the Pearl River Delta [80], diffused urban
growth in Northern Italy [22], and rapid urbanization in
Latin American cities [35]. Other attempts at modeling
and predicting sprawl have beenmade by Papini et al. [58]
for Rome and Cheng [28] for Wuhan, while Engelen’s
group at RIKS in the Netherlands has been responsible for
many applications of their model system to various Euro-
pean cities [9].

There are at least four applications which do not fo-
cus on urban growth per se. Wu and Webster [77] have
been intent on adding spatial economic processes and
market clearing to such models, while Portugali and Be-
nenson [59] in Tel-Aviv have focused their efforts on in-
tra-urban change, particularly segregation and ghettoiza-
tion. Semboloni [64] has worked on adding more classical
mechanisms to his CA models reflecting scale and hierar-
chy as well as extending his simulations to the third di-
mension, while there have been several attempts by physi-
cists to evolve a more general CA framework for urban de-
velopment which links to new ideas in complexity such as
self-organized criticality and power law scaling [7,63].

It is worth showing some graphics from such CAmod-
els as they are being applied to real cities. In Fig. 9, we
show how the DUEM model can be used to simulate the
pattern of development change in the Detroit region of
South East Michigan. In a sense because we live in world
dominated by a somewhat unhealthy interest in growth, it
might be assumed that all the models we have presented
here are only geared to simulating new development. In
fact, each of these models can simulate decline or repro-
duce the steady state because CA models can solely deal
with transitions and change in the existing fabric as we il-
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 9
Simulating very slow growth and rapid decline in the Detroit region using the CA DUEMmodel

lustrated earlier in the Schelling segregation model. This
is the case in Detroit where the population has rapidly ad-
justed and segregated its locations in the last 50 years but
in a context where the overall growth has been extremely
modest with many areas growing very fast in the suburbs
but the central areas declining at similar rates. The profile
in Fig. 9 is akin to a steady state rather than the overall ex-
ponential growth or decline shown in previous examples.

There are some agent-based models at the land use
or activities level which enable predictions of future ur-
ban patterns but the main focus is at the very micro-level
where local movements in terms of traffic are being sim-
ulated [25]. Several models that approach the agent-based
ideal originate from other areas. TRANSIMS is a hybrid
in that its roots are in agent-based simulation of vehi-
cles but it has been scaled to embrace urban activities [55]
and even UrbanSim can be interpreted through the agent
paradigm. A parallel but significant approach to individ-
ualistic modeling is based on micro-simulation which es-
sentially samples individual behavior frommore aggregate
distributions and constructs synthetic agent-based models
linked to spatial location [30]. This is a rapidly changing
field at the present time with no agreement about termi-
nology. The term agent is being used to describe many dif-

ferent types of models with some focusing on unique ob-
jects ranging from cells or points in space where activities
or individuals exist to models of institutions and groups
with only implicit spatial positioning [44].

Models of Urban Morphology

The models introduced above do not capture many of the
physical features of cities and regions in terms of their
morphology. Cities are highly organized with respect to
their form, displaying as we have already seen in terms
of city size, clusters of activity on all scales, in short, frac-
tals [16]. Insofar as static equilibrium models are able to
reproduce this form and to an extent they are able to do
so, this is largely because some of the structure of the city
is input into these models through existing employment
and population distributions which have already captured
elements of the morphology. There are competitive effects
in these models too that are intrinsic to these simulations
with the dynamic models based on cellular automata clos-
est to reflecting these processes in urban form. This is be-
cause the process of development is generated from the
bottom up and agglomeration is a key feature of the pro-
cesses of development that are simulated as in some of the
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 10
The growth of Las Vegas from 1907 to 1995 (from [1])

models discussed in the last section. Here we will simply il-
lustrate some of the evolving forms that various combina-
tions of the models already discussed are able to simulate.
This shows how various processes of land development
and travel behavior can come together to generate struc-
tures that are close to what we observe in the real world.

A good example of the urban growth which has been
rapid over the last 50 years is Las Vegas, the fastest grow-
ing metropolitan area in the United States which is illus-
trated in Fig. 10 [1]. The sprawl does not look very differ-
ent from time period to time period although it is clear that
growth is clustered and these clusters tend to merge as the
city grows. In this sense, the pattern always looks likemore
of the same from time period to time period but inside the
city, things have changed rather more dramatically as the
place has moved from desert oasis and staging post prior
to 1950 to the entertainment and gambling capital of the
US. Exponential growth of population, employment and
tourism is implied by this volume of urban development
mirroring the simplest ‘un-capacitated’ growth model in
Eqs. (36) and (37). The fact that the city has grown in some
directions rather than others is largely due to a combina-
tion of physical and accidental historical factors and does
not imply any differences in the way growth has occurred
from one time period to the next.

Cellular automata models can generate such growth
where entirely local development rules are operated uni-
formly across the space to grow a city from a single seed.

This can lead to fractal patterns, patterns that are self-sim-
ilar in form with respect to scale, of the kind observed in
real cities. In Fig. 11a, we show how the operation of deter-
ministic rules where a cell is developed if there is one and
only one cell already developed in its immediate neigh-
borhood, leads to a growing structure. This is a typical
example of a modular principle that preserves a certain
level of density and space when development occurs but
when operated routinely and exhaustively leads to cellular
growth that is regular and self-similar across scales, hence
fractal. In Fig. 11b, the shape of the structure generated is
now circular in that development eventually occurs every-
where. The city fills up completely but the order in which
this takes place is a result of development taking place at
each time period with random probability. This is the ef-
fect of introducing ‘noise’ or ‘diversity’ into themodel used
to generate the sequence in Fig. 11a.

If urban growth is modular and scales in the simplis-
tic way that is portrayed in these models of fractal growth,
then it is not surprising that there is a tendency to ex-
plain such patterns generically, without regard to growth
per se; to study these as if they represent systems with an
equilibrium pattern that simply scales through time. But
this is a trap that must be avoided. Dig below the sur-
face, and examine the processes of growth and the activ-
ities that occupy these forms, disaggregate the scale and
change the time interval, and this image of an implied sta-
bility changes quite radically. During the era pictured in
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Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 11
Growth from the bottom up. a deterministic growth based on developing cells if one and only one cell is already developed in their
8 cell adjacent neighborhood, and b stochastic growth based on developing cell if any cell is developed in the adjacent neighbor-
hood according to a random probability

Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and UrbanMorphologies, Figure 12
Greater London: self-similar clusters and the connectivity network within the sprawl

Fig. 10, technology has changed dramatically. Las Vegas
did not acquire its gambling functions until the 1950s but
by then it was already growing fast and the subsequent in-
jection of cash into its local economy, the largest per capita
in the western world for those who reside there, did little
to change the pattern of explosive growth that followed.
The manner in which people moved in the early Las Ve-
gas was by horse and wagon but the city could only grow
with the car, the plane and air-conditioning, not to say the
incredible information technologies that now dictate how
one gambles, wins, and loses.

Our six frame ‘movie’ of the growth of Las Vegas does
reveal that the established pattern of adding to the periph-

ery is not entirely the complete story for small blobs of
development seem to attach themselves and then are ab-
sorbed back into the growing mass as growth catches them
up. In this case, this is simply housing being constructed
a little beyond the edge due to the mechanics of the de-
velopment process. In older, more established settlement
patterns such as those inWestern Europe for example, this
might be the absorption of older villages and freestand-
ing towns into the growing sprawl. Consider the picture of
population density in London recorded in 1991 and illus-
trated in Fig. 12a. Here there are many towns and villages
that existed long before London grew to embrace them. If
we define the metropolis as the connected network of set-
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tlement that fills an entire space where everyone can con-
nect to everybody else either directly or indirectly, the pic-
ture is similar as we show in Fig. 12b.

One could envisage London being connected in this
way with a much sparser network of links while at the
other extreme the entire space could be filled. In fact,
it would seem that the level of connectivity which has
evolved with respect to the density of the space filled is
just enough for the city to function as a whole. It is this
morphology and degree of connectivity that marks the fact
that the city has reached a level of self-organization which
is regarded as critical. If connectivity were greater, more
space would be filled and many more connections put in
place but the structure would contain a certain degree of
redundancy making it inefficient. Below this, the system
would not be connected at all and it would not function as
a metropolis. In fact there are strong relationships to this
characterization of urban settlement as a porous media in
which a phase transitionmight take place as the systemfills
up which in network terms, is like a percolation thresh-
old [13]. The models that we have sketched above all pro-
vide ways of generating these kinds of morphology, albeit
through somewhat different mechanisms than the obvious
way in which growth in physical systems takes place. The
forms generated constitute an essential check on the ade-
quacy or otherwise of these system models.

Future Directions

The biggest problems facing the development of complex
systems models in general and those applied to cities in
particular involve validation. The move from articulat-
ing systems as organized entities structured from the top
down based on some sort of centralized control mecha-
nisms to systems that grow in an uncoordinated way from
the bottom up have also shifted our perspective from de-
veloping systems model in a parsimonious way to devel-
oping much richer models requiring more detailed data.
In short, complexity theory has changed the basis for the-
ory and model selection from an insistence that all mod-
els must be testable against data to an acceptance that if
there is a strong reason why some non-testable proposi-
tions should be included in a model (as models with very
rich behaviors and processes imply), then these should be
included even if they cannot be tested. This is consistent
with the shift from aggregate to disaggregate modeling,
from the focus on equilibrium to dynamics, and on pro-
cesses and behaviors rather than simply outcomes.

This changes the entire basis of validation and com-
bined with the difficulties of articulating processes which
are clearly relevant but often unobservable, the way in

which models might be useful in policy making in com-
plex systems is changing too. Modeling is nowmuch more
contingent on context and circumstance than at any time
in the past. The use of multiple models, counter mod-
eling and the synthesis of different and often contradic-
tory model structures is now taken for granted in systems
where we consider there may be no optimal solutions and
where there will always be dissent from what is regarded
as acceptable. Many newer models such as those based on
cellular and agent-based structures and those which pos-
tulate a dynamics that involves bifurcations that are often
of only theoretical interest until one such dynamic is ob-
served, are unlikely to meet the canons of parsimony in
which unambiguous tests can be made against data. These
limits to validation begin to suggest that complex system
models need to be classified on a continuum of ways in
which they can be tested and used in practice which will
depend on the type of model, the context, and the users
involved [17].

In terms of more substantive developments, the ques-
tion of dynamics is still of burning importance in develop-
ing better models of cities. There is an intrinsic problem
of articulating urban processes of change from sparsely
populated data bases which often contain only the aggre-
gate outcomes of multiple processes. The way in which our
commonsense observations of decision making in cities
can be linked to more considered outcomes represented in
data has barely been broached in developing good mod-
els of urban spatial behavior. In agent-based modeling,
the role of cognition is important while the question of
defining agents at appropriate levels is a major research
focus, particularly when it comes to aggregates which are
of a more abstract nature, such as groups and institutions.
However what is of clear importance is the fact that as
our focus becomes finer and as we disaggregate to ever
more detailed levels, we then begin to represent policy pro-
cesses into which these models might be nested in more
detailed ways, implying that policy making and planning
itself might be simply one other feature of these system
models.

In short in our quest for more detail and for embrac-
ing a wider environment, city models have come to en-
capsulate the control mechanisms themselves as intrinsic
to their functioning. It is at this point that we need much
better ways of showing how such models can be used in
practice. To an extent, this implies that we need to link
these system models to their wider context of use and ap-
plication, showing how other conceptions, other systems
models, might be related to them in less formal ways than
in terms of the science we have presented here. This has
always been a challenge for the application of complex-
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ity theory to human and social systems, and it will remain
the cutting edge of this field whose rationale is the predic-
tion and design of more efficient, equitable, and sustain-
able cities.
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Glossary

Anthropogenic emissions Greenhouse gas emissions
that are produced as a result of humans through such
developments as industry or agriculture.

Greenhouse gases The gases of the atmosphere that cre-
ate the greenhouse effect, which keeps much of the
heat from the sun from radiating back into outer space.
Greenhouse gases include, in order of relative abun-
dance: Water vapor, carbon dioxide, methane, nitrous
oxide, ozone, and CFCs. Greenhouse gases come from
natural sources and human activity; present CO2 levels
are $380 ppmv, approximately 100 ppmv higher than
they were in pre-industrial times.

Soybean cyst nematode Heterodera glycines, a plant-par-
asite that infects the roots of soybean, with the female
becoming a cyst. Infection causes various symptoms,
including a serious loss of yield.

El Niño-southern oscillation (ENSO) A phenomenon in
the equatorial Pacific Ocean characterized by a pos-
itive sea-surface temperature departure from normal
(for the 1971–2000 base period) in the Niño 3.4 region
greater than or equal in magnitude to 0.5°C, averaged
over three consecutive months.

North atlantic Oscillation (NAO) A hemispheric, me-
ridional oscillation in atmospheric mass with centers
of action near Iceland and over the subtropical At-
lantic.

Vegetative index A simple numerical indicator used to
analyze remote sensing measurements, often from
space satellites, to determine how much photosynthe-
sis is occurring in an area.

Soil organic carbon All the organic compounds within
the soil without living roots and animals.

Introduction

The term climate change refers to an overall shift of mean
climate conditions in a given region. The warming trend
associated with anthropogenic emissions of greenhouse
gases and the enhanced greenhouse effect of the atmo-
sphere can and should be regarded as a “climate change”
when viewed on the time scale of decades or a few cen-
turies.

Climate change exacerbates concerns about agricul-
tural production and food security worldwide. At global
and regional scales, food security is prominent among the
human concerns and ecosystem services under threat from
dangerous anthropogenic interference in the earth’s cli-
mate [17,29,50]. At the national scale, decision-makers are
concerned about potential damages that may arise in com-
ing decades from climate change impacts, since these are
likely to affect domestic and international policies, trading
patterns, resource use, regional planning, and human wel-
fare.

While agro-climatic conditions, land resources and
their management are key components of food produc-
tion, both supply and demand are also critically affected by
distinct socio-economic pressures, including current and
projected trends in population and income growth and
distribution, as well as availability and access to technology
and development. In the last three decades, for instance,
average daily per capita intake has risen globally from
2,400 to 2,800 calories, spurred by economic growth, im-
proved production systems, international trade, and glob-


