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The signature of scaling in human systems is the well-known power law whose key characteristic is that the

size distributions of their objects display self-similarity in space and time. In many systems such as cities,

firms, and high buildings used here as examples, power laws represent an approximation to the fat or heavy

tails of their rank-size distributions, appearing stable in time with little change in their scaling over tens or

even hundreds of years. However, when the detailed dynamics of how their ranks shift in time is examined,

there is considerable volatility in such distributions. To explore this microvolatility, we introduce measures of

rank shift over space and time and visualize size distributions using the idea of the ‘‘rank clock.’’ We illustrate

this for populations of Italian towns between 1300 and 1861 and then compare this analysis with city-size

distributions for the world from 430 B.C.E., the United States from 1790, Great Britain (England, Scotland,

Wales) from 1901, and Israel from 1950. When we extend this analysis to the distribution of US firms from

1955 and high buildings in New York City and the world from 1909, we generate a rich portfolio of space-

time dynamics that adds to our understanding of how different systems can display stability and regularity at

the macro level in the face of considerable volatility at the micro. � 2010 Wiley Periodicals, Inc. Complexity

00: 00�00, 2010
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SCALING IN COMPLEX SYSTEMS

O
bjects or entities that define many complex systems

often scale with respect to the frequency at which they

occur in space and/or in time. Such scaling reveals an

order in the system manifest in the fact that patterns recur

over different scales, revealing what is called in fractal geom-

etry, self-similarity. This is best visualized as some configura-

tion of system entities that appear the same, at least statisti-

cally, from one scale to another, good exemplars being den-

drites whose branches mirror the way rivers drain a

landscape, crystals solidify, and liquids of different viscosity

penetrate one another, all the way to how energy is delivered

to the human body and how organizations arrange them-

selves in overlapping hierarchies [1].

Formally, the most general scaling, which captures the

frequency f(x) with which elements of different size x
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recur, is signified by a power law defined as f(x) � x2a,

where a is the parameter of the distribution. Such fre-

quencies scale in that if x is multiplied by k then f(kx) �
(kx)2a 5 k2ax2a � f(x). One essential feature of such

power laws is that fact that they have no length scale,

being unbounded with respect to the size of an event or

its frequency. Systems so defined have the potential to

generate events of any size on any scale, extreme events,

and in some contexts, display the potential for uncapaci-

tated growth and extreme competition. In systems that

scale, the focus can either be upon the frequency of events

of different size or on the size of the events themselves. In

one sense, this is only a matter of changing perspective

but it does lead to confusion in terminology with respect

to the shape of distributions where f(x) � x2a; as events

get larger, their frequency gets smaller and vice versa. In

popular usage, those events that are less frequent form the

‘‘long tail’’ of the distribution with events of a smaller size

being ever more frequent. In these systems, which range

from word frequencies to the sale of popular music, size is

less important for each event is considered as unique [2].

In this sense, frequency is often taken as size.

In other systems such as those we deal with here, the

larger the size of the event, the less frequent this is, as for

example, in city-size or firm-size distributions. Thus, the

usual practice is to transform the frequency distribution

into its counter cumulative, which gives the rank of the

object in question according to its size, the largest being

rank 1, the second largest rank 2, and so on. Integrating

f(x) from some x to xmax, we define the rank as r(x) 5

Fx?xmax
(x) � x2a11, which can then be transformed with

respect to size x as x � r(x)1/12a [3]. Zipf [4] called this the

rank-size rule, which is in its purest form when a 5 2, x �
r21 implies that when r 5 1, x 5 xmax, and thus x 5

xmaxr
21. Here, the long tail is sometimes referred to as the

tail characterizing the smallest sizes, with the heavy or fat

tail the one describing the largest (and often most signifi-

cant) objects or events of which there are far fewer. We

will adopt this definition henceforth.

The reason for referring to these distributions with

respect to their tails is due to the fact that power laws are

often used to best approximate certain portions of the dis-

tribution such as their fat tails. Although such scaling dis-

tributions represent our starting point, many distributions

that define complex systems can only be so approximated

and at the present time, it appears that lognormal distri-

butions represent a wider generic class describing the way

such systems are structured. These emerge directly from

extremely simple models of competitive growth involving

growth and decline as well as births and deaths of new

system elements, where under certain conditions, power

laws are generated [5�7].

In the sequel, we first define growth mechanisms based

on models of competition that lead to systems whose ele-

ments change in size. These types of generic mechanism

define population systems such as cities, buildings, and

firms, which, in general, change in size over decades or

centuries but are subject to a more volatile dynamics over

very long time periods such as millennia. Our analysis

shows that although the frequencies defining these distri-

butions are extremely stable which with respect to their

upper or heavy tails, are essentially scaling, there is con-

siderably more volatility over shorter periods of time such

as decades. To provide some sense of these dynamics, we

introduce a powerful method for visualizing how these ele-

ments change relative to each other over time in the form

of the rank clock [8]. After introducing the generic clock

for different city-size distributions, we look at nonspatial

systems such as firm sizes, and thence, one-off growth

regimes as characterized in the construction of high build-

ings. Finally, we draw together the implications that these

morphologies have for different growth regimes, thence,

defining an agenda for further research.

COMPETITION AND THE SPACE–TIME DYNAMICS OF
CITIES
The simplest growth process assumes no births or deaths but

starts at time t with a fixed number n of elements of size xi(t).

It grows each element (i) by applying a positive random growth

ei to their existing size so that xi(t 1 1) 5 (1 1 ei)xi(t). Simple

experimentation for a fixed number of objects such as firms or

cities, indicates that it is increasingly unlikely for all the objects

to grow at the greatest rate and that ultimately one of these will

dominate. In this process, objects will go up and down in size,

but eventually one will dominate while some objects will ulti-

mately become too small and will be deemed to have died.

Generalizing the process to random proportionate growth gen-

erates distributions that are essentially lognormal as first illus-

trated by Gibrat [9]. The long tail of the lognormal might be

considered the fat tail of the rank-size distribution and it is this

that is often approximated by a power function. If this model is

further generalized to repel objects from becoming too small,

various researchers [6,7,10] have shown that a power law distri-

bution can be generated over the whole range of sizes. This is

one of the most parsimonious ways of generating a size distri-

bution that scales and when adapted to a network where the

size of the node grows using proportionate effect and adding

network links from which such effects emanate, similar scaling

distributions for the size of the hubs emerge [11]. Indeed, Bara-

basi’s [12] network models of preferential attachment can be

seen as a generalization of these growth models, all falling

under the umbrella of a wider class of models that emphasize

cumulative mutual advantage.

There are several types of growth process that can be

modeled using this generic mechanism. In terms of cities, pop-

ulations that are measured by their size can grow or decline.

Populations grow from the smallest settlements to the point

where they ‘‘become’’ cities and their growth is, thus, asymmet-
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ric; to be a large city, one must first be a small city. Because of

difficulties of defining what a city is at the lowest population

level but more because of the lack of data, we will only work

with the largest cities, taking the top 100, 200, and so on, thus

establishing immediately that the analysis and visualization is

relative to the size of the system in terms of number of objects

chosen. In such cases, ‘‘births’’ of cities occur when they enter

the top ranks—say the top 100—and cities ‘‘die’’ when they

leave this ranking. The random proportionate growth model is

consistent with the widely established spatial hierarchy of

cities, which was first established by Christaller [13], a contem-

porary statement of which is provided by Fujita et al. [14].

There are of course difficulties in defining the spatial

extent of cities but generally these can be dealt with. It is

much harder to ensure that firms are defined appropri-

ately as mergers and acquisitions can destroy any size

grouping. In terms of buildings, although these have gen-

erally got taller as cities have grown, buildings do not usu-

ally grow per se. They are usually constructed afresh and

thence demolished, and only small fraction of buildings

are modified and grown or reduced in size in situ. It is

easier to see how firms and cities compete to increase in

size than buildings. Nevertheless, bigger buildings usually

do occur in places where there are already high buildings,

and it is easy to consider the random proportionate

growth model being adapted to take account of copycat-

like behaviors as ever higher buildings are constructed.

Then in the case of buildings, we might expect a rather

different dynamics but in the period in question—the last

100 years or so—we will disregard the very small number

of tall buildings that have been demolished.

We begin with a modest example involving the growth of

cities in the Italian peninsula from the 14th to the 19th century

[15,16].1 The space�time dynamics is relatively uncomplicated

in that the main cities—Bologna, Firenze, Genova, Milano,

Napoli, Padova, Palermo, Roma, Venezia, and Verona—were

established by the 14th century, and the period until Italian

unification when our analysis ends (in 1861) did not see dra-

matic growth or radical shifts in the ranking of the key centers.

We have a manageable seven time instants—1300, 1400, 1500,

1600, 1700, 1800, and 1861—for which we have population

size data on the 555 towns that existed during the period, and

we can thus rank the towns by population size and examine

any changes in rank rather easily. This core of towns has

remained in the top 15 by population size since the beginning

of the Renaissance. In the subsequent analysis, we will only

examine the rankings of the top 100 towns by size at each of

the seven time instants and over the temporal period, only 195

distinct towns enter the analysis. Of course, some enter the top

100 and then leave, only to enter again by the end of the pe-

riod, and our analysis cannot account for towns that move up

and down the rankings during the intertemporal periods for

which we do not have data. A total of 360 towns that exist in

the dataset in fact never enter the top 100 and are thus really

villages or at least settlements that never become significant.

Although we are dealing with the top 100 towns by population

size in each of the seven time periods, in the second period (t

5 1400), the total number of towns falls to 95, whereas in all

other periods, the number is slightly greater than 100 due to

ties in the rank orders. In terms of the relative stability of pop-

ulation during this period, the total population of all 195

towns, which is 2.1 million in 1300 declines to 1.71 million by

1500 (probably due to the Black Death and war). It only recov-

ers to 2.22 million in 1700, rising to 3.97 by 1861, indicating the

early beginnings of political unification and industrialization.

This is a good case as it lets us introduce a number of tools

for analyzing and visualizing space�time dynamics using a

particularly tractable and easy-to-understand example. We

first graph the seven rank-size relations as logarithmic trans-

formations of xi � r(xi)
1/12a as log xi 5 F 2 b r(xi) where the

slope b is equal to the scaling parameter 1/(1 2 a). We show

these distributions in Figure 1(a) where their similarity is even

clearer when they are collapsed onto one another. There are

various ways of estimating the scaling parameter. The most

traditional that has most bias is to estimate b using ordinary

least squares (OLS) from which we can then compute the

scaling parameter as âOLS ¼ 1þ b�1. A less biased way is to

use maximum likelihood adapted to power functions (see

Newman, Ref. [17]), and this consists of solving the likeli-

hood equation for each distribution as

âml ¼ 1þ n
X
i

log
xi

xmin

" #�1

(1)

where âml is an estimate of the scaling parameter, n the

number of observations in the city dataset (which can vary

for each time period), and xmin the minimum population

defining the lower bound of each city-size distribution.

Because such size distributions are more likely to be in their

steady state in the fat or upper tail, then the lower tail

should be truncated at some minimum [18]. We explore this

in the software available for these visualizations and having

estimated âml for K varying minimum values xk, we form

the average as

a ¼ 1

K

X
k

1þ n
X
i

log
xi
xk

" #�1
8<
:

9=
;: (2)

In Table 1, we present these estimates from which we

speculate that these values are close enough to suggest that

there have been no major transitions in top-ranked cities

during this 500-year period.

1The data has been compiled by Paolo Malanima and is

available at http://www.issm.cnr.it/.
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VISUALIZING SCALING: THE RANK CLOCK
There are two obvious ways to further explore this space-

time dynamics. First, we can examine the shift in ranks

between two periods. For any two different time instants,

the rank shift can be visualized by plotting one of the size

distributions using the ranks associated with the other dis-

tribution. In Figure 1(b), we show this shift for the Italian

city sizes, plotting the distributions in 1400 and 1861,

where shift is based on plotting the 1400 sizes using the

1861 ranks. The picture is one of greater volatility than we

FIGURE 1

Visualizing space�time dynamics in terms of rank shift. (a) Zipf plots for the seven time instants, (b) Shifts in ranks between 1400 and 1861, (c) Shifts
in ranks of all towns throughout the seven time periods in rank space, and (d) the Rank Clock. The colors are chosen from red through blue according
to the chronology of appearance of towns from 1300 and according to their rank. The first town, the top rank at 1300, is colored red; the last town is
the last rank to enter at the latest time period and is colored blue. Animations of (c) and (d) can be seen at http://www.casa.ucl.ac.uk/complexity/.
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have seen so far. We can plot all the shifts for every time

instant in rank space if we trace the rank and size of each

city through their evolution as we do in Figure 1(c). Here,

the colors are set as follows: the largest and most ancient

town is colored red throughout and towns that are smaller

and/or enter the top rank later are colored according to

the spectrum red�orange�yellow�green to blue. We also

use this color map for the rank clocks that we use to visu-

alize these and other distributions introduced later. How-

ever, this visualization in rank space confuses the picture

even more, whereas Figure 1(b) implies considerable shifts

in rank and Figure 1(c) tends to play these down for the

balance of color shows that the oldest and largest ranks

from early in the evolution of the city system tends to

remain in place throughout. What we need is something a

little more visually intrusive to pull out any deviations that

are significant, and to this end, we introduce the idea of

the rank clock, which we show in Figure 1(d).

The rank clock focuses entirely on changes in the ranks

with the trajectory of each object—in this example, a town

or city—representing its rank order in a circular space. At

any time, the top-ranked object is always at the center, the

lowest rank at the circumference or the furthest point to

the edge if the circumference has not been reached. Time

is arrayed in a clockwise direction from the usual north-

noon point of the clock. The time period over which the

analysis takes place is marked by the circumference whose

length is 2p, in short the complete clock. The clock is

composed of distinct trajectories, five of which we visual-

ize in Figure 2, although our more general quest is to

compile different examples of these morphologies.

Objects that remain at the same rank are marked by

exact circles around the clock, which close on themselves.

Objects that rise inexorably in their rank, spiral into the

clock while objects that decline systematically spiral out.

Objects can, of course, enter and leave the clock as many

times as possible, and there are obvious extreme cases: if

an object were to enter at t, leave at t 1 1, enter again at

t 1 2, and so on, then this pattern would simply appear as

a dot every other time period at the rank where it entered.

Note that, in general, we do not have the rank of the

object before it enters the top ranks, so objects quite liter-

ally appear on the clock when they enter. If we did have

these ranks, then we could compute their actual trajecto-

ries. One way of doing this would be to construct the clock

for a much bigger system of objects and then reduce this

to a lesser number of top ranks. In Figure 2, we now show

an object that enters and then leaves to re-enter again and

its opposite, one that leaves, re-enters, and leaves again.

The pole of the clock is significant for in many scaling sys-

tems, one of the objects often remains the biggest. In city

systems, this is quite common: for example, since 1500,

Napoli has been at rank number 1 for the Italian urban

system, and for the last 200 years, New York City has been

at rank 1 in the United States, London at rank 1 in Great

Britain, and so on. To compare two rank clocks, it must be

assumed that the temporal circularity is directly compara-

ble between examples and it is thus only relevant to do

this, if one assumes that the temporal behaviors of two or

more different systems are comparable within the sweep

of the circumference. Moreover, systems with different

number of objects—are usually not directly comparable.

From the clock in Figure 1(d), two features are immedi-

ately clear. First, the towns that are top ranked in the late

Middle Ages and early Renaissance retain their dominance

to the middle of the 19th century. This is clearly seen in

the concentration of the color red around the pole of the

clock. Second, volatility where colors diverge markedly

from circularity occurs toward the edge of the clock. Here,

we see little evidence of towns that are large and become

small leaving the pole of the clock, spiraling out to the

edge, or of towns that rise in rank dramatically spiraling

into the clock. Unlike our later cases, there are only a

handful of such examples in the Italian city system. Torino

does not enter the picture (the top 100 ranks) until 1500

and then it rises swiftly to rank 4 by 1861. Siena, on the

other hand, occupies rank 7 in 1300 and drops to rank 45

in 1861. It is hard to make these out on the clock in Figure

1(d), but the software that is available enables this to be

illustrated quite easily. Readers are referred to http://

www.casa.ucl.ac.uk/complexity/ where all these figures are

illustrated in color, where animations of the order in

which the towns emerge in time around the clock are pre-

sented, and where the software to explore these ideas can

be downloaded.

The clock also focuses on other measures of change.

Changes in rank from time period to time period are

clearly seen as changes in the distance traveled around

the clock as this kind of morphology is rooted in a circular

geometry. For the rank ri(t) of each object i at time t, we

can define an individual distance—a first-order differ-

ence—which can be plotted on the clock. We do not show

this distance clock here [8] but distance is defined as

TABLE 1

Estimates of Rank Size

Year âml a âOLS r2

1300 2.493 2.699 2.447 0.886
1400 2.836 2.696 2.393 0.851
1500 2.606 2.522 2.283 0.858
1600 2.500 2.438 2.262 0.873
1700 2.631 2.506 2.277 0.871
1800 2.698 2.594 2.403 0.893
1861 2.582 2.562 2.365 0.899
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diðtÞ ¼ jriðtÞ � riðt � 1Þj; (3)

and aggregate distances can be defined over all cities for

each time period as

dðtÞ ¼
X

i
jriðtÞ � riðt � 1Þj=nðtÞ: (4)

n(t) is the number of cities in the distribution at each time

period. If cities are unique in terms of measures of their

size, then this might be set as n(t) 5 100, Vt although in

the Italian example because of ties in size, the number

varies slightly at each time. This gives a measure of the av-

erage changes in rank that occur for all cities that remain

in the set. In fact, second, third, fourth, and greater order

changes can be computed if so required as can related

measures of cumulative change such as

dðsÞ ¼
X

i;t¼1;...;s
jriðtÞ � riðt � 1Þj=nðtÞ: (5)

The average switch in ranks over all cities and all time

periods, in this example, from 1300 to 1861, and over all

195 cities that appear in the top ranks, is

d ¼
X

t
dðtÞ=T : (6)

where T is the total time over which the change takes

place; in this example, it is 561 years. We show these

measures for the Italian system in Table 2 where it is clear

that on an average, a typical city shifts approximately 15

ranks (d) over 100 years, consistent with the shifts [d(t)]

taking place over each 100-year interval, which range from

12 to 17.

Our last measure of space�time dynamics involves the

speed at which cities enter or leave the top-ranked set of

cities. It is easy enough to count the number of cities

comprising the top set of ranks at time t, which are still in

the new top set at some time later or earlier than t, say t

1 s or t 2 s. We define this number as L(t, t 1 s) for the

cities that existed at time t in the top ranks and are still in

the top ranks at t 1 s; and L(t 2 s, t), the number of cities

that were in the top ranks at time t 2 s and are still in the

top ranks at time t. A little reflection suggests symmetry of

these counts, that is L(t, t 1 s) 5 L(t 2 s, t). We can work

out the average number of cities that perpetuate with

respect to a given time period t as

LðtÞ ¼
X

m 6¼t
Lðt;mÞ=ðn� 1Þ; (7)

whereas the average number of cities that perpetuate from

the top ranks at any time over all other time periods is

L ¼
X

‘ 6¼t;m6¼s
Lð‘;mÞ=ðn� 1Þ2: (8)

These measures assume that the number of cities is

fixed and need to be modified if these vary by time period

as in the Italian example.

The half life is defined with respect to the entire time

period T. As we do not have explicit functions that

describe the process by which cities persist in the top

ranks, we need to figure out these half lives by inspection

and interpolation where the time intervals are usually not

fine enough to compute these half lives exactly. We can do

this for the whole series, of course, or we can do it for

each time instant where it will vary. Essentially for each

time t, we need to solve the equation L(t,t)/2 5 L(s, t) 5

L(t, s). Because no generic formal function for this persist-

ence exists, we need to examine the matrix L(t, t 1 s), but

assuming exponential decay, it is likely that the number of

cities in the top ranks will decline through time from the

FIGURE 2

Possible trajectories defining the morphology of the rank clock.

TABLE 2

Distance Measures: Changes in Rank for All Cities over All Time
Periods

Time Period d(t) d(s)

1300�1400 16.949 16.949
1400�1500 16.797 21.612
1500�1600 17.064 23.775
1600�1700 11.780 25.371
1700�1800 13.063 23.940
1800�1861 14.518 21.446
Average distance d 15.519
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point at which they are considered. If they do not, then

this is evidence of extreme persistence and regularity in

the system and the degree to which the half life

approaches the maximum number of ranks is a measure

of this stability.

Our Italian example is useful for the number of time

periods is small enough to enable a casual examination of

the matrix elements L(t, t 1 s), which we present in Table

3. Although the maximum number of towns in any one

distribution is 118, 195 different towns appear in the ma-

trix from 1300 to 1861. In fact, there is a remarkable per-

sistence of the core set of towns with an average of

approximately 74 appearing to perpetuate throughout the

period. In fact, for the remaining set of towns, there is

considerable volatility in the rankings with substantial

movements amongst the smaller towns, which continually

and aggressively compete for pride of place. From Table 3,

it is clear that the half life in all cases is perhaps a little

longer than the 561 years over which these distributions of

towns are observed, implying very little spatial restructur-

ing and rather low levels of growth. For the 118 towns in

1300, some 65 or 55% of these still exist in the top 109 in

1861. An average half life of approximately 600 years

would be a good guess, which is much larger than the

other examples of city systems that we will now examine.

CITY SYSTEMS AT DIFFERENT SCALES
We now have a small arsenal of tools to explore the space-

time dynamics of scaling systems and a brief summary is

worthwhile. First, a good measure of stability with respect

to size is the Zipf plot, specifically the scaling parameter a

or its equivalent b, the degree of competition. When b < 1

or a > 2, the larger objects in the distribution are closer in

size to the smaller implying less competition and vice

versa. Second, the best graphic is the rank clock for indi-

vidual objects that can be traced in terms of their trajecto-

ries and the whole set of objects can be visualized as a

morphology. The two measures of difference, the first

based on distance and the second based on guesstimates

of the half life, are useful in measuring actual shifts in

rank. The distance of course depends on the time periods

in question and represents the shift, which takes place in

number of ranks over one standard time period. For the

Italian data, this is 100 years (with 61 years, appropriately

adjusted for the statistics, in the seventh period). Examin-

ing Table 2, we see that the average rank shift is approxi-

mately 15 over 100 years, and this suggests that over 500

years, the shift would be approximately 75. The second

statistic is the half life, which we guessed at about 600

years where approximately 50�60 would shift out of the

top ranks entirely during this period. As cities enter and

leave the rankings, simply taking the average distance d

and scaling it by 5 or 6 will give an overestimate of the

shift but it suggests that judicious use of half lives and dis-

tance measures provide a rich picture of these dynamics

The cumulative distance d(s) is probably a better measure

of shift because this takes into account cities that enter

and re-enter the rankings as the system evolves.

We are now in a position to select and track some very

different city systems, which exist at very different scales.

We have analyzed city-size distributions for the top 50

cities in the world from 430 B.C.E. to 2000 A. D. with vari-

able time intervals using Chandler’s [19] database, which

is the largest scale and longest time period that we have

dealt with. At the next scale down, the continental, we

have examined changes in rank size for the top 100 cities

in the United States from 1790 to 2000 at 10-year intervals

(from the US Census Bureau [20]), then for the country

level, the top 50 in Great Britain from 1901 to 2001 also at

10-year intervals,2 and finally, for a much smaller region,

the top 172 towns in Israel from 1950 to 2005 with variable

time intervals [21, 22]. Israel is more like a metropolitan

region with respect to scale although each of these exam-

ples has very specific geopolitical and cultural characteris-

tics, which add to the variety of this selection.

For each of these systems, we need to choose either a

fixed set of top ranks or simply let the number of cities in

the wider database condition the number of cities being

ranked at any time instant. For example, in the Israeli

example, there are 172 towns, which exist at some time

over the 55-year period from 1950 to 2005. In 1950, there

are 34 towns defined, while by 2005, there are 164. How-

ever, eight of the towns appear at some point in the rank-

ings for the 13 time instants, entering and then leaving the

space by 2005. In this sense, we do not constrain the Is-

raeli example whereas for the GB example, we have 458

towns that do not change throughout the entire 100-year

TABLE 3

Number of Cities L(‘,m) that Persist from Times ‘ to m

Time ‘, m 1300 1400 1500 1600 1700 1800 1861

1300 118 81 80 71 70 67 65
1400 81 94 81 65 62 64 59
1500 80 81 106 82 76 73 70
1600 71 65 82 104 85 80 76
1700 70 62 76 85 103 89 79
1800 67 64 73 80 89 107 86
1861 65 59 70 76 79 86 109
L(t) 72 69 77 77 77 77 73
L 74

2Census Dissemination Unit (CDU) http://census.ac.uk/cdu/,

accessed on 06/01/10.
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period. However, we only examine the top 50 towns at any

of the 10 time instants, and in this case, 70 of the 458

towns are considered. We choose this number so that we

can clarify the dynamics, notwithstanding the obvious

point that for the dynamics will change as we select more

towns from the total set. In fact, in illustrating these dy-

namics using the static clock on the printed page, visual-

ization is clearest when the number of towns is restricted

to about 100 or less. For visual analysis of many more

objects, zoom and pan facilities as well as animation are

required (see http://www.casa.ucl.ac.uk/complexity/).

The world system of cities is the most volatile. There are

no cities in the top 50 in 430 B.C.E. that are still there by 2000,

and there are only six in the top 50 from the Fall of Constanti-

nople in 1453. The half life of the original set of cities is

approximately 200 years, which reduces to about 100 years by

the 20th century. The rise and fall of civilizations, particularly

Greece and Rome, the coming of the Dark Ages, the parallel

growth and decline and growth again of China, and the explo-

sion of cities in the developing world can all be gleaned from

the trajectories of cities in this database. The morphology of

the rank clock is shown in Figure 3(a) and it is quite clear that

FIGURE 3

Rank clocks for the world (a), United States (b), Great Britain (c), and Israel (d).
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there is no sense in which there is a group of persistent core

cities as in the Italian example. The longest lived example of a

city in the top 50 is Suzhou in China, which exists for 2158

years of the 2430 years covered and even this city is no longer

in the top 50 (although it is growing fast and could re-enter

the list unless absorbed in Greater Shanghai). The half life of

cities in the world system is clearly reducing fast and is now

no more than 75 years, falling at the rate of 20 years for every

additional 25 years of time. The system nearest this rate of

change is the US system, which we plot in Figure 3(b), that

displays all the features of the generic example in Figure 2.

New York City remains at the center of the clock unchanging

since 1790, while cities like Chicago, Los Angeles, and Hous-

ton spiral into the top ranks as the population has diffused to

the Midwest, California, and the South West over the last 150

years. Cities, such as Charleston, in the old colonial east spiral

out of the clock as the United States begins to industrialize

from the mid 19th century on.

Our two other examples are as different again. In GB, the

half life is about twice that of the United States and the cur-

rent world system, at approximately 150 years, and it shows

little sign of changing. This is because by 1901, all the key set-

tlements were established—the core cities had developed dur-

ing the 19th century, and suburbanization in the 20th has not

made much impression on the overall pattern of urban devel-

opment. The clock is shown in Figure 3(c) where the core

stands out as in the Italian system. However, the Israeli system

is quite different in that it is almost impossible to guess the

half life as new settlements have been established and grown

continually during the last half century during the time when

the country has developed and consolidated. Thus, the half

life is effectively an order of magnitude longer than the time

during which development has taken place. A crude guess

would be between 50 and 70 years but in a growth situation

where all 34 of the original settlements in 1950 are still in the

top ranks in 2005, this is hard to assess for the number of set-

tlements dropping out of these ranks is very small. The half

life is really a forward looking measure notwithstanding the

symmetry of the flow matrix L(‘, m). Better measures involve

distances, which we will now discuss. The rank clock for the

Israeli system is shown in Figure 3(d).

The fit of the rank-size functions to the data for all city

systems over all time periods is shown in Table 4, and the

proportion of the variance explained ranges from 85 to 95%.

The scaling parameters all tend to be greater than two sug-

gesting that the largest cities tend to be less dominant than

in the pure Zipf case (a � 2). The average distance shift in

ranks must be interpreted in the light of the average time

periods over which the size trajectories are observed. Inter-

estingly, since industrialization for the US, GB and Israeli

city systems, these show shifts of rank between 4 and 8 over

10-year periods, whereas the shift in rank for the world sys-

tem is approximately eight over periods of some 80 years.

This distance measure is much less reliable as the time peri-

ods vary so massively, whereas in the case of the Italian sys-

tem, the shift is about 16 over 80 years, which pro rata gives

a shift of some five ranks for every 10 years, similar in fact to

the other National City systems.

The last point we need to make is based on a visual com-

parison of the rank clocks. Clearly, the US and Israeli clocks

begin with less than 100 top cities as these systems do not

have 100 cities at their start. The US clock then reaches 100

in 1840 and then we keep these top ranks stable. The Israeli

clock illustrates the entire growth trajectory with no con-

straints on numbers. Both these clocks show growth with

the Israeli example showing the persistence of core cities

and massive growth of new ones. The US system has much

less of a focus on the core cities as is consistent with the

rapid diffusion of large cities in the west and south. The

British picture is one of more classic slow growth with many

trajectories showing circularity, that is, ranks remaining

similar over time and the core being maintained. The world

system is by far the least stable in that cities of the ancient

era are clearly quite different from those of the middle ages,

the Chinese empire, and the modern world.

DISAGGREGATE POPULATIONS: FIRM SIZES AND
BUILDING HEIGHTS
Our last two examples involve rather different human sys-

tems. The size distributions of firms from 1955 to 1994 for

the United States are taken from the Fortune 500 data and

the size distributions for tall buildings (skyscrapers) for the

TABLE 4

Comparative Measures of Rank Shift for Five City Systems

City Systems Number n Time, T (yrs) t ? t 1 1 (yrs) Min âml Max âml Min r2 Max r2 Min d(t) Max d(t) d L

World cities 47�50 (390) 2430 80 (25�260) 2.127 3.236 0.906 0.945 4.914 10.973 7.785 14
US cities 24�100 (266) 210 10 1.952 2.674 0.911 0.944 2.242 7.559 4.667 25
GB cities 50 (458) 100 10 2.746 4.062 0.948 0.951 1.941 9.857 4.220 41
Israeli cities 34�164 (172) 55 4 (1�11) 1.748 2.035 0.782 0.850 1.578 5.917 4.032 83
Italian cities 94�118 (555) 561 80 (61�100) 2.493 2.836 0.851 0.899 11.780 17.064 15.519 74
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world and for New York City from the Emporis buildings

database.3 In terms of firms, we have focused not on all

500 but on 100 as by now it must be clear that as the

number of objects increases, the rank clock is more and

more impressionistic in that it requires zoom capability to

see individual trajectories. Firms can be ranked, as can

cities, by any measure of their size, and in this case, we

have revenue and the profit/earnings ratios, which give

measures of how well the firm is doing. We will not show

this latter set here (however, see Ref. [22]), but in Figure

4(a), we plot the revenue clock, and it is immediately clear

that there is large but regular volatility in the rankings of

firms.

Essentially, a core of firms does stand out but there is

considerable erosion in their ranks. The rate of this ero-

sion is rather regular and this is best seen in Figure 4(b),

which is a visual plot of L(‘, m) showing the number of

firms that stay in the top 100 rankings as time elapses. We

can measure the half life from this, which is about 25

years, and Figure 4(b) marks out the firms that stay in the

top rankings from the beginning year 1955 and the firms

that enter or leave the rankings pivoted around the mid-

year 1975. Figure 5 shows the trajectories of six of these

firms where quite clearly steel and heavy industry such as

rubber spiral out of the rankings while high tech (e.g.,

IBM) spiral in. American car manufacturers like American

Motors have mixed fortunes but the largest such as Chrys-

ler more or less maintain their rank with General Motors

(not shown) ranked as number one throughout the 40

years. In Table5, the rank-size relations show extremely

good fits with r2 near 99% for all distributions.

Our second example is dramatically different. All the

tall buildings greater than 12 stories or 40 metres in height

in our datasets have not changed in height since their con-

struction. Only in places of very rapid growth such as

Hong Kong are tall buildings now being systematically

demolished and rebuilt and it might be argued that such

instant changes in rank, which such demolition and

reconstruction occasions is tantamount to the construc-

tion of new buildings. This means that buildings do not

rise in rank, and they simply appear at a particular rank

and never get any higher than their original rank.

The first high building in each dataset is taken as being

constructed in 1909 although there are skyscrapers built

before then. In New York City, there is a rapid increase in

the number of such buildings being constructed in the

1920s and 1930s. Because of ties in height, the top 100 con-

tain some 119 in 1916, which means that the particular rank

clock shown in Figure 6(a) reaches out to 120 on its radius

rather than 100 before falling back to 100 or 101. The clock

FIGURE 4

(a) The Fortune 100 rank clock and (b) the persistence decline of firms by rank 1955�1994.

3Fortune 500 data from 1955 to 2005 is available for each

year from the CNN Money website. http://money.cnn.com/

magazines/fortune/fortune500_archive/full/1955/index.html.

We only use the data from 1955 to 1994 because the series

was redefined in 1995. The high buildings data is from the

Emporis global database http://www.emporis.com/en/bu/sk/.
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is based on a complete spiralling out and downward of

buildings from the time they enter the top ranks. The early

buildings before the late 1920s are colored red, orange, and

yellow, and these are blanked out by the flurry of construc-

tion shown in green color in the early 1930s. Some of these

buildings stay in the top 100 for the rest of the time period,

but in general, later buildings are greater in height and to

produce a clearer picture, it is necessary to zoom into the

clock (see at http://www.casa.ucl.ac.uk/complexity/) and

explore these trajectories. Figure 6(b) shows the clock for the

world data where it is quite clear that globally, some high

buildings constructed in earlier eras persist at high ranks

into recent times. This picture of growth is considerably later

than in the New York City case due to high building diffus-

ing globally as countries in the developing world have

grown. If one takes a cross section in these clocks at any

time, this gives a picture of the time when a building was

constructed and its rank, and this needs to be compared

with the persistence matrix L(‘, m).

Numerical statistics are presented for these two examples

in Table 5. The rank-size functions for New York City fit with

reasonably good approximations as the r2 statistics show with

later distributions having better fits. The same is true of the

world data although the performance earlier in the time series

is not as good. One issue that makes these distributions very

different is the degree of competition as reflected in the scal-

FIGURE 5

Individual rank trajectories for selected Fortune 500 firms 1955�1994.

TABLE 5

Comparative Measures of Rank Shift for Firms and Tall Buildings

Scaling Systems Number n Time, T (yrs) t ? t 1 1 (yrs) Min âml Max âml Min r2 Max r2 Min d(t) Max d(t) d L

Fortune 100 Firms 100 (343) 41 Yearly 2.205 2.739 0.987 0.995 3.397 7.988 5.158 56
NY City Skyscrapers 12�119 (516) 101 Yearly 3.048 6.259 0.873 0.959 � � � 39
World Skyscrapers 1�101 (500) 101 Yearly 3.997 7.462 0.627 0.962 � � � 19
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ing parameter a. The values are much higher than two mean-

ing that the slope of the rank-size curves are considerably flat-

ter than the pure Zipf case where b 5 21. This is of interest

not only that it suggests much less competition between the

construction of high buildings in an intraurban context but

also that the growth dynamics is quite different from that

which characterizes cities and firms, which grow in the bio-

logical sense due to accretion. In terms of the distance statis-

tics, these are tricky to compute due to the fact that all the

time periods are not distinct; in earlier periods, buildings per-

sist but new ones are not always constructed at later time

periods, and thus, ranks can remain the same. Moreover, the

distance measures all point in one direction—downward in

terms of rank shift. This suggests again that we need some

modifications to these visualizations to account for systems

where objects do not grow per se but do lose their position in

the rankings due to the appearance (growth) of other objects.

NEXT STEPS AND FUTURE RESEARCH
Scaling systems involving human populations clearly dis-

play a form of regularity at the macro level, which

masks dynamic volatility at the micro. We measure this

by the extent to which objects change their position in

relation to one another through their rank-size distribu-

tions. Yet, we do not have a detailed understanding of

the way these dynamics play out but we do know that

competition between these various elements is intrinsic

to the way they capture growth from one another. In

fact, in city systems, traditional theories where central

places grow from the bottom up, gradually deriving their

functions as they get larger and serving ever large popu-

lations, go a long way to explaining how cities scale at

the macro level [14]. When it comes to the growth of

firms, the logic is more complicated by the process of

mergers and acquisitions whereas in the case of systems

that are manufactured such as buildings, a very different

substrata of dynamics is at work, dictated by the way

developers define the need for high buildings, much

complicated by the construction process and by invest-

ment decisions.

Our visualization of these changes suggests that differ-

ent scaling growth regimes display different morphologies,

and we have made a start at classifying these as rank

clocks. However, we still need much better methods for

making statistical comparisons between such systems. We

need to pursue at least three lines of inquiry: first, to de-

velop a more robust set of space�time statistics for scaling

systems, which establish comparisons between different

sizes of system; second, to generate network equivalents

of such scaling systems that will add a richness to the

analysis; and last but not least, we need more examples at

different spatial scales where we can draw clear links

between cities, buildings, and firms, which are all manifes-

tations of how populations agglomerate in achieving

economies of scale.

FIGURE 6

Rank clocks of the top 100 high buildings in the New York City (a) and the world (b) from 1909 until 2010.
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