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Abstract Darwinian studies of collective human behav-
iour, which deal fluently with change and are grounded in
the details of social influence among individuals, have
much to offer “social” models from the physical sciences
which have elegant statistical regularities. Although
Darwinian evolution is often associated with selection and
adaptation, “neutral” models of drift are equally relevant.
Building on established neutral models, we present a
general, yet highly parsimonious, stochastic model, which
generates an entire family of real-world, right-skew socio-
economic distributions, including exponential, winner-take-
all, power law tails of varying exponents, and power laws
across the whole data. The widely used Barabási and Albert

(1999) Science 286: 509-512 “B-A” model of preferential
attachment is a special case of this general model. In
addition, the model produces the continuous turnover
observed empirically within these distributions. Previous
preferential attachment models have generated specific
distributions with turnover using arbitrary add-on rules,
but turnover is an inherent feature of our model. The model
also replicates an intriguing new relationship, observed
across a range of empirical studies, between the power law
exponent and the proportion of data represented in the
distribution.

Keywords Neutral theory . Human dynamics . Scaling . Pop
music .Markets . Culture evolution . Baby names . Cultural
transmission . Power laws . Fashion . Random copying

Introduction

In behavioural ecology, the evolution of cultural traditions
is often viewed as a process of functional adaptation,
achieved at the level of individual selection, through the
currency of individual costs and benefits (cf. Weissing et al.
2010). Human behavioural ecology is a tradition in itself, of
exploring social evolution in terms of energy budgets and
the adaptive value of behaviour within a particular physical
environment (Steward 1955; Winterhalder and Smith 2000;
Cronk and Gerkey 2007; Houston 2010). In this tradition,
there is often an assumption that the behavioural variation
needed to “solve” an adaptive problem available through
behavioural plasticity gives humans a range of possible
strategies from which they can rationally choose and then
apply to particular situations in the attempt to optimise
energy expenditure, time expenditure, reproductive or other
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benefits (Boone and Smith 1998; Winterhalder and Smith
2000; Holden et al. 2003; Borgerhoff Mulder et al. 2009;
Houston 2010). Hunting or gathering optimises the acqui-
sition protein and/or calories, while preferences for human
attractiveness reflect attributes of health or reproductive
fitness, such as an optimal waist-to-hip ratio in a woman’s
figure, or symmetry in a man’s face.

Human behavioural ecology can therefore predict broadly
the functional constraints on human decisions, but within
those constraints, there are often many equivalent choices,
particularly in “fashionable” activities like pottery-making,
music, art, humour, language and material culture. Cultural
evolution acceptable variation is present even among such
adaptively crucial activities as mating and procuring food.
The “ideal” female figure that appeals to US college students
looks like someone who is “skinny in the waist and has
diarrhoea” to a Yomybato man of the Peruvian rain forest (Yu
and Sheperd 1998). Even group norms of economic fairness
(i.e. results in the Ultimatum game) vary substantially cross-
culturally (Henrich et al. 2005).

Compared to the small-scale societies of human prehis-
tory, the range of choice in modern Western consumer
culture is many orders of magnitude larger (Beinhocker
2006). There can be so many nearly equivalent choices
(think of all the similar brands of mobile phones, shoes, and
soap powders), that there is almost nothing to distinguish
them inherently. Given too much choice, even physical
attractiveness and mating strategies (cf. Hasson and Stone
2010) are affected—online social networking, “speed dating”
and urban population sizes provide orders of magnitude more
choice than in a small prehistoric hunter-gatherer society,
where choice of mate was relatively minimal (if not
effectively pre-arranged through kinship ties).

Within a range of functional constraints, then, human
choice is much more free to be determined through social
value, especially as humans have evolved into social
animals par excellence (Dunbar and Shultz 2007; cf.
Marshall 2010). Few behavioural choices can be explained
exclusively in terms of individual costs and benefits
involving calories, or energy, time or other currency. Even
hunting, which is not the most reliable means of procuring
protein—females can often supply it more reliably by
gathering nuts, for example (Lee and DeVore 1976)—is
simultaneously a crucial means for males to socialise and
acquire prestige (Wiessner and Schiefenhövel 1997;
Henrich and Gil-White 2001).

Social learning is a complex process, as there is a wide
range of strategies people use to choose what or whom to
copy (Laland 2004; Henrich and Gil-White 2001), which
facilitates the development of different norms and beliefs
between groups (Boyd et al. 2010). In small-scale societies
where a detailed ethnography can be done, these different
strategies or biases might be delineated. Among large

populations, however, like modern mass media markets, or
populations of Internet users, for example, virtually all of
these copying biases will exist, in different proportions. Just
about everyone will have a particular, personal reason for
choosing a first name for their child, popular book, or even
ideological belief (in modern developed countries where
choice is more individual). Also, the vast amount of
specialised knowledge in the world is now perhaps a
billion times (give or take an order of magnitude) the
technological variation of a prehistoric hunter-gatherer
community (Beinhocker 2006).

At the scale of large populations, it is virtually impossible
to track individual biases from aggregated datasets such
as a census data, popularity statistics, sales figures, and
so on. The new scale is, in effect, a new phenomenon
(Anderson 1972). Just as chemists would use the Ideal
Gas Law to predict the pressure of a gas rather than try to
tally the physical energies of all the individual molecules,
social scientists looking at populations of social learners
need to abandon hope of tracking individual copying
biases and perform analyses in a more explicitly statistical
way. We thus focus on populations rather than individuals.
Complex cultural traditions, as Boyd and Richerson
(2005: 16) point out, “are the product of a population of
minds … In the absence of such a population, the costly
structures necessary for accurate imitation are useless”.

For large populations where individual learning biases
are virtually intractable, we need an appropriate approach—
a bit like the Ideal Gas Law—that treats the population as if
all the possible biases and individual rationales balance
each other out. This is especially appropriate where there is
a large range of virtually equivalent choices in terms of
functional value—as in spoken or sign language (Hauser
et al. 2002), prehistoric pottery decorations (Neiman
1995; Shennan and Wilkinson 2001), or writing, for
example, as well as in modern fashionable names and
words (Hahn and Bentley 2003; Berger and Le Mens
2009), leisure activities (Bentley and Ormerod 2009), and
music preferences in a social environment (Salganik et al.
2006).

For behaviours that are socially learned, cultural drift
is becoming increasingly evident (Koerper and Stickel
1980) to the point where population size and social
learning can become one of the determinants of culture
itself (e.g., Renfrew and Scarre 1998; Shennan 2000;
Powell et al. 2009). One of the outcomes of social learning
at the scale of larger populations is that cultural element
frequencies are characterised by stochastic change, rather
than by usefulness and adaptation. This was recently
demonstrated, for example, by an Internet-based experi-
ment on music downloading (Salganik et al. 2006), and
studies of baby names (Hahn and Bentley 2003; Berger
and Le Mens 2009).

538 Behav Ecol Sociobiol (2011) 65:537–546



This is why a simple model of random copying among
individuals (with occasional innovation), also known as the
“Neutral model”, can fit many of the data patterns of
cultural change, among both humans and social animals
such as birds (Neiman 1995; Shennan and Wilkinson 2001;
Lachlan and Slater 2003; Byers et al. 2010). Although
neutral traits appear to be fundamentally unpredictable in
terms of the frequencies of specific variants, they are
collectively characterised by a number of statistical regu-
larities involving the variation within the set of adopted
variants (Neiman 1995; Lipo et al. 1997; Shennan and
Wilkinson 2001), regular turnover among the most popu-
larity variants (Bentley et al. 2007), and in long-tailed
distributions of the variant frequencies (Bentley et al. 2004;
Mesoudi and Lycett 2009).

This model is equivalent to an evolutionary neutral
model (cf. Hahn and Bentley 2003), except with the added
memory parameter. In our model, each individual holds one
“idea”, and that idea may be copied by another individual.
Hence the ideas (the parallels of phenotypes in evolutionary
neutral theories) replicate with probability proportional to the
number of individuals having that idea, although importantly,
the actual replication varies from that frequency-dependent
probability through random chance.

The Neutral model has thus shown great promise for
explaining long-tailed distributions in socio-cultural data, but
so far it has not quite been able to replicate the wide range of
long-tailed distributions that exist in society. Recently,Mesoudi
and Lycett (2009) explored the effect of incrementally adding
a conformity bias to the Neutral model, which essentially
skewed the variant frequency distribution towards what is
sometimes known as the “winner-take-all” distribution, which
Bentley and Shennan (2003) had expected under frequency-
dependent copying. This modification was an advance, but
there is still a much broader range of long-tailed distributions
left to explain (Newman 2005; Clauset et al. 2009).

We thus propose a modified Neutral model, based upon
individual agents who are boundedly rational and are
influenced by the behaviour of other agents in terms of
their decision-making. In other words, the agents act with
social purpose, fundamentally different from physical or
biological phenomena where the agents (or particles) are
incapable of intent. The key improvement that we make is
to introduce a “memory parameter”, which allows agents to
look at any number of previous decisions by other agents,
from just the previous period alone (at one extreme) to all
previous periods (at the other extreme). We return to this
point below.

The model provides four advances on previous models:

& It can generate a wide range of right-skew distributions
observed in cultural, economic and social situations
from different combinations of its two parameters.

& The widely used Barabási-Albert (B-A) model (Barabási
and Albert 1999) of preferential attachment is a special
case of this general model.

& In terms of power law fits, there are two essential
statistics, the exponent a and the fraction ƒ of the total
observations over which the power law is believed to
hold. The model can replicate both observed exponents
a and the fraction ƒ from real-world observations
(Newman 2005; Clauset et al. 2009).

& Many real-world right-skew distributions exhibit con-
stant turnover in the rankings of their constituents even
if their functional form is time-invariant (Batty 2006;
Bentley et al. 2007). Our model is capable of generating
such turnover without recourse to self-fulfilling rules
such as “aging” or variable “fitness” of the individual
elements (Newman 2005).

We stress that our model is not a network model, and
therefore not a modified B-A model as such. Whenever a
network model is applied to social dynamics, two analogies
are possible:

& The nodes represent the agents (e.g., academic papers),
and the links are the relationships between them
(citations)

& The links represent agents (e.g., consumers), and the
nodes represent the choices the agents make (e.g.,
purchased brands)

Whatever the representation, new nodes in B-A models
link with probability p(k) to existing nodes, where p(k) is a
function of the degree k of the existing node (and possibly
time t as well, in aging models). Agents and nodes are
inseparable, connected by the network. Our evolutionary
model is different because the agents and their ideas are
separable: each new agent adopts its idea either by copying
another agent, or by inventing an idea of its own.

Methods

The model builds on previous versions of the cultural Neutral
model (e.g. Neiman 1995; Shennan and Wilkinson 2001;
Hahn and Bentley 2003; Bentley et al. 2004, 2007; Mesoudi
and Lycett 2009), but with several key modifications,
especially the variable memory parameter mentioned above.

Consider a model populated initially by N agents located
in some abstract space such as a sequence of index
numbers. Depending on the phenomenon, each location is
an abstract representation; it could refer to the city where a
firm chooses to locate itself, but it could equally well refer
to the product a consumer chooses, or the idea or fashion
that a person follows. We define the size of a location as the
number of agents at that location.

Behav Ecol Sociobiol (2011) 65:537–546 539



The model proceeds in a series of steps. In each step,
n new agents enter the model, where the number n is fixed
as a parameter in each solution of the model. With
probability 1-μ, an agent copies the choice of location
from that of an existing agent within the previous m time
steps, or else with probability μ, the agent innovates by
choosing a unique new location at random. In other words,
the agent either copies an existing agent from the last m
steps, or chooses a new location. As described above, the
choice for copying is made from the pool of agents, such
that the probability a location is copied is proportional to
the number of agents already located there.

Here we restrict our exploration to two key parameters of
the model, m and μ, by choosing convenient values for N
and n. The “memory” parameter m determines the number
of steps of the previous decisions of other agents over
which an agent looks when making its decision. The
“innovation” parameter μ determines the fraction of the
agents who decide to take a completely new decision
rather than replicating one of the decisions made by other
agents.

Results

The Neutral model as previously studied (e.g., Bentley
et al. 2007; Mesoudi and Lycett 2009) is actually a specific
version of this new, more general model, with m=1 (i.e.,
memory only of the immediately preceding step). For the
special case of n=N and m=1, analytical solutions demon-
strate a power law distribution (Evans 2007) for Nμ equal to
or slightly greater than 1. For m=1 and Nμ<<1, this
gradually converges on a winner-take-all distribution as Nμ
approaches zero.

The case where m=all is a further special category of the
model, where extinction or obsolescence does not occur. In
this case, we can achieve different power law slopes by
varying n and μ. Figure 1 shows, for example, that we can
match the B-A preferential attachment model (Barabási and
Albert 1999), obtaining a power law exponent a∼3 over the
entire distribution, by using m=all with N=1, n=10, t=
20,000, and μ=0.6.

For socio-cultural phenomena, however, we expect
memory to be limited, and thus m in general to take values
below the special case of “all”. So while we define the
model to allow m to take any value between 1 and all, we
explore here a limited range, from m=1 to m=100 time
steps of limited memory. The combined effect of varying m
along with varying the innovation parameter μ generates
both a wide range of right-skew distributional forms and
turnover of rankings of locations within those distributions.
Considerable anthropological and socio-economic evidence
exists (e.g., Eerkens 2000; Diederen et al. 2003; Srinivasan

and Mason 1986; Larsen 1961; Rogers 1962) on the
plausible values for μ being no greater than 0.1.

Figure 2a plots typical solutions of the model using
acceptable values of μ, while varying m (holding N=1,000,
n=100 and showing the results at time step 1,000). Aside
from the selected results shown in this figure, the model
produces additional results ranging from a winner-take-all
outcome, to a power law over the entire distribution
(exponent a∼1.5) to a power law fitted to the tail of
varying exponent. Figure 2b illustrates how the model
parameters can be selected so that the results match real-
world right-skew distributions, such as religions, website
subscriptions, word use, names, and author citations.

Regularity in the long tail

Table 1 lists power law tail exponents a for various
recently collated social data sets (Newman 2005; Clauset
et al. 2009) along with the fraction ƒ (=ntail/n) of total
observations in the tail, with the tail defined as the ntail
rightmost datum points on the rank-size distribution. A
striking, and previously unreported, feature of these
estimates is the relationship between a and ƒ, where these
data reveal a clear inverse correlation. The smaller the
fraction ƒ of the distribution best-fit to a power law tail,
the larger the exponent a of that tail. The least-squares fit
is a=1.54ƒ−0.156 (R2=0.952, omitting the one outlier of
email address book sizes because as many such lists are
generated by automated computer algorithms, we consider
this to be an unreliable observation).

Figure 3 plots this relationship in the empirical data
along with the least-squares fit using the model, as solved
100 times, for each of μ=0.05, 0.06 and 0.07, with m=30
in each case (and N=1,000, n=100, t=1,000). The results
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Fig. 1 The power law generated from the preferential attachment
version of the model. The probability distribution for a typical model
run uses N=1, n=10, t=20,000, μ=0.6, and m=all (where the
generated sizes are logarithmically binned). The exponent a for the
power law is −2.9 (R2=0.996), matching that reported (also by
ordinary least-squares regression) for preferential attachment models
(Barabási and Albert 1999)
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show a=1.56ƒ−0.155 (R2=0.975), very similar to the data-
based relationship.

The distribution of turnover

The model also produces continual turnover through time
for any given distribution, as demonstrated by the distribu-
tions of life-spans within ranked lists (life-span being the
number of time steps a location spends on the list) as in
Fig. 4a. This resembles the life-spans of real-world social
and economic fat-tail distributions in Fig. 4b. The memory
parameter m again expands the power of the model.
Although turnover has already been demonstrated (Evans
2007) for the special case m=1, different values of m are
needed to account for empirically observed turnover.

Figure 5 shows distributions generated of life-spans in
the top 5 (i.e., number of time steps location spent in the
top 5 most popular) in tests with increasing memory m and
invention rate μ (the plots in Fig. 5a-d show progressively
larger values of m, while each plot shows five different
orders of magnitudes for μ). The effect of increasing
memory m is to reduce the effect of innovation μ such that
when m=all (Fig. 5d), the distributions are all virtually the
same form (albeit with different finite limits to the
cumulative number of locations).

Discussion

Socially learned behaviour that could be called “cultur-
al” is observed in animals as diverse as fish (Laland
2004), birds (Lynch and Baker 1994; Slater and Ince
1979; Lachlan and Slater 2003), and of course primates
and other species (Galef and Laland 2005). What sets
humans apart is that humans are more accurate and
complex social imitators than any other animal species
(Boyd and Richerson 2005). Social influence is arguably
ubiquitous among the human species (Dunbar and Shultz
2007). In fact, rather than the agent’s cost-benefit analysis
that has served as a null hypothesis for rationality

Fig. 2 Log-log plots of rank and size. a for typical model solutions
with N=1,000, n=100, t=1,000 and: μ=0.01, m=1 (black); μ=0.01,
m=100 (red); μ=0.08, m=100 (white); μ=0.0001, m=2 (green). b For
real-world top 100 ranked lists (dots) versus model results (lines). Top
100 lists include: male baby name frequency (per million) in the 1990
US census (blue), RSS feed subscriptions 2001–2008 (orange),
English words (red), cited economists 1993–2003 (purple), and
religions in thousands of adherents (green). With N=1,000, the model
fits were made with μ=0.001, m=50, n=200, t=4,000 for names, μ=
0.00002, m=6, n=2,500, t=10,000 for RSS feeds, μ=0.00025, m=85,
n=100, t=1,100 for cited economists, μ=0.004, m=4, n=450, t=
8,000 for words, and μ=0.0007, m=2, n=100, t=4,000 for religions.
Data sources: Male baby names from www.census.gov, cited economists
from www.in-cites.com, religious adherents from www.adherents.com,
RSS feeds from radio.xmlstoragesystem.com/rcsPublic, and English
words from www.bckelk.ukfsn.org/words/uk1000n.html

Quantity n xmax xmin a (alpha) ntail f=ntail/n

Intensity of wars 115 382 2.1±3.5 1.7±0.2 70±14 0.609

Religious followers (×106) 103 1,050 3.85±1.60 1.8±0.1 39±26 0.379

Word count 18,855 14,086 7±2 1.95±0.02 2,958±987 0.157

City population (×103) 19,447 8,009 52.5±11.9 2.37±0.08 580±177 0.030

Terrorist attack severity 9,101 2,749 12±4 2.4±0.2 547±1,663 0.060

Surname frequency (×103) 2,753 2,502 112±41 2.5±0.2 239±215 0.087

Paper citations 415,229 8,904 160±35 3.16±0.06 3,455±1,859 0.008

Email address books 4,581 333 57±21 3.5±0.6 196±449 0.043

Papers authored 401,455 1,416 133±13 4.3±0.1 988±377 0.002

Table 1 Power-law fits
determined by Clauset et al.
(2009) among socio-cultural
data sets. Parameters include the
number of observations n, the
maximum observed value xmax,
the number of observations in
the tail ntail and the minimum
value in the tail xmin
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for over a century, an alternative is that each agent uses
(consciously or not) the decisions of others as a basis for
his or her own decisions.

Applying this to social animals, Laland (2004) presents a
useful overview of social-learning strategies, including
copying the majority, copying kin, friends, or older
individuals, and copying behaviours that are rare, or
successful, or better. In humans, this would include more
complex social cues, such as copying people of high
prestige or status (Henrich and Gil-White 2001). In trying
to understand emergent phenomena in modern popular
culture, however, it would be virtually impossible for us to
trace all these different biases at the population scale. For
this reason, we have presented here a model with no biases
at all, that is one where the copying process was completely
neutral. We can add biases, as was done for a simpler
version of the neutral model with fewer parameters
(Mesoudi and Lycett 2009), but just by adding the memory
parameter as we have done here, we find that our modified
neutral model has new complexity that we need to
understand before exploring the effects of additional
parameters representing biases.

The social-influence model we have presented allows
choices among multiple possible alternatives, which rise
and fall in relative popularity over time, rather than binary,
“either–or” decisions (cf. Kacelnik et al. 2010). This is
truly reflective of human interactions such as the choice of
a popular name for a child, the citation of an academic
paper, or movement to a city where others have chosen to
live. Indeed, these phenomena are inherently defined by the
past decisions of others, without which there would be no
cities, familiar names, or popular culture.

The model also offers an alternative to the many
modified Barabási-Albert (B-A) models of the last 10 years
for the right-skew nature of income, words, scientific
papers, and city sizes, for example (Newman 2005; Clauset
et al. 2009; Simon 1955a; Zipf 1949; Price 1965; Pareto
1907). In the statistical sciences, particularly statistical
physics, the recent explosion of interest in such distributions
for social phenomena includes internet links (Huberman and
Adamic 1999; Barabási and Albert 1999), author citations
(Redner 1998), sexual partners (Liljeros et al. 2001), and
firm sizes and their extinctions (Axtell 2001; Ormerod 2006)
amongst many others.

With socio-economic phenomena, the detailed debate
over the exact form of these distributions—for example,

Fig. 4 Life-spans of individual locations. a Typical model runs,
showing the cumulative distribution of number of time steps spent in the
top 5 for model runs of 1,000 time steps with N=1,000, n=100, and m=
1. b Life-spans of UK Number One Hits (www.theofficialcharts.com)
for 1956–2007 (open circles), versus the model, m=1, μ=0.1 (blue
line), and t years in the Top 5 US boys’ names (www.ssa.gov/OACT/
babynames), 1907–2006 (filled circles) versus the model, m=10, μ=
0.001 (red line). Since the temporal units are arbitrary, the modelled life-
spans were divided by two to match the albums, and divided by ten to
match the names (which on the log-log plot slides the distribution
to the left)
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Fig. 3 The power law tail exponent a versus the fraction f of total
observations represented by the tail. The dots show power law tails
calculated for various real-world socio-cultural data sets (see Table 1
for values and errors), whose relationship (dashed grey curve) can be
approximated by a=1.54f −0.156 (R2=0.952 except for the outlier—the
open circle—from email lists). The thin red curve shows the least-
squares fit from 300 runs of our theoretical model which gives a=
1.56/f −0.155 (R2=0.975). Exponents have been estimated using
maximum likelihood (Newman 2005; Clauset et al. 2009)
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power laws versus similar fat-tailed functions such as the
stretched exponential (Newman 2005; Clauset et al. 2009;
Laherrère and Sornette 1998; Perline 2005)—often involves
the characterisation of the distribution at a point in time.
This neglects the importance of dynamics and the underly-
ing behaviour (Borgatti et al. 2009; Batty 2006), which
gives rise to changes over time within any given distribu-
tion. Simon (1955a) argued that right-skew distributions
were so widespread that their key similarity was likely to be
“in the underlying probability mechanisms” that led to their
generation. This is clearly the case but, as noted in the
social sciences for over a century (Borgatti et al. 2009), it is
inherently a description of macro phenomena, without an
explanation for the individual behaviour that gives rise to
emergent properties.

Within such distributions, there is constant change. In
other words, the distributions are not merely long tailed, but
dynamic as well. Whilst large numbers of papers have been
written on the right-skew nature of the distributions, the

turnover within these distributions remains poorly under-
stood. This is an issue on which researchers in evolution
and human behaviour can make great advances. Econo-
physics models struggle with change, and yet change is the
essence of evolutionary models. Classical consumer choice
theory, involving rational agents making independent cost-
benefit decisions, often does not work for populations in
which people influence each other’s choices (e.g., Ormerod
2006; Beinhocker 2006).

Our model derives from evolutionary neutral models
originating over 40 years ago which, ironically, may apply
better to selected cases of cultural evolution than to
biological molecular evolution (see Hahn 2008). Although
for most non-human organisms, behavioural evolution is
often associated with natural selection, sexual selection or
kin selection (e.g., Edwards 2010; Hasson and Stone 2010;
Marshall 2010; Ratnieks et al. 2010; Weissing et al. 2010),
our application of an evolutionary neutral model towards
modern human fashions achieves several key effects,
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Fig. 5 Modelled life-spans of individual locations. This shows the
cumulative distribution of number of time steps spent in the top 5 for
model runs of 1,000 time steps with N=1,000, n=100 for a m=1,

b m=10, c m=100, d m=all. The values of μ shown are 0.1 (black),
0.01 (dark blue), 0.001 (light blue), 0.0001 (purple) and 0 (red)
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including matching a range of real-world popularity
distributions, their turnover through time, and the empirical
match to the a-ƒ relationship in Fig. 3. These real-world
effects have never been matched by a single, simple model.
The model we have presented can generate not only a wide
range of long-tailed distributions but a constant turnover of
the constituent agents within any given overall rank-size
distribution. It is also able to replicate a newly identified
empirical relationship whereby the power law exponent
increases as the proportion of data in the tail falls.

The model is quite general, despite using only two main
parameters. Varying the parameter values can yield a range
of distributions, such as a power law over the whole
sample, a power law only in the tail, and a winner-take-all
outcome. This combination of results makes this model
unique among the many alternatives that can produce
power laws. The most commonly proposed processes such
as preferential attachment, proportionate effect based on
Gibrat’s principle, the “Matthew effect” and the Yule
process (Newman 2005; Clauset et al. 2009; Batty 2006;
Yule 1925; Simon 1955b), produce power laws from the
positive feedback introduced by interactions between
individual agents. But these “rich get richer” models have
not been able to account for flux in the constituents of the
ranked distribution (Batty 2008), either when growth is one
of strict preferential attachment or even when growth is
proportionate to a stochastic rate independent of size
(Gibrat 1931).

In related network approaches, such as B-A models with
aging (e.g., Dorogovtsev and Mendes 2000), the probability
of the choice itself (at the node) diminishes with its age.
This is less appropriate for our own interest in the adoption
of ideas, where an idea does not go extinct because it is old,
but because no one uses it anymore. In many cases the
opposite is true; the oldest English words, for example, are
actually the ones most frequently spoken today (Pagel et al.
2007). It is more appropriate and effective to model the
limited memory of the choosers, as our model does, rather
than the aging of the choices. A recent network model
(Hajra and Sen 2006) does, in fact, briefly explore limited
memory, but again equating nodes with ideas may work for
the specific application to authors and their citations of
other authors (Gallegati et al. 2006), but does not work at
all for the much more general cases that we have explored
here, where the ideas and their choosers are entirely
separable. By contrast, in our evolutionary model the
agents and their ideas are suitably separable: each new
agent adopts its idea either by copying another agent, or by
inventing an idea of its own.

Social scientists have been critical of modelling social
and economic data by mapping onto known phenomena in
physics without considering realistic behavioural motiva-
tions of the agents (Borgatti et al. 2009; Gallegati et al.

2006; Bentley and Shennan 2005). As a step in this
direction, our model captures two fundamental motivations,
the imitation of others and novelty in invention.

Compared to simpler but less flexible versions of this
model (Hahn and Bentley 2003; Bentley et al. 2007; Byers
et al. 2010), a crucial new variable appears to be the
memory m, which reflects different time frames to which
agents will refer in different contexts. In terms of pure
fashion markets such as popular music for example agents
take into account only the most recent decisions of others
and hardly ever those of several months or even weeks ago.
However in choosing where to locate geographically, for
example, a firm or a person in a city will implicitly be using
information from many previous time steps with respect to
the decisions made by others.

Generating a range of long-tailed distributions with
dynamic turnover, these features distinguish this model
from the standard socio-economic science model of
individual rational behaviour where social influence is the
exception to the rule (as in, for example, “irrational” stock
market bubbles or real estate crises). With its unrealistic
psychological assumptions (Kahneman 2003) and incon-
sistencies with experimental results (Smith 2003), the
standard model suffers from a neglect of social influence,
even in its modern form which permits, for example,
asymmetry in the amount of information possessed by
different agents (Akerlof 1970; Stiglitz 2002), the cost of
gathering information (Stigler 1961), and imperfections in
gathering and processing information (Simon 1955a).
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